首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is widely accepted that next-generation networks will provide guaranteed services, in contrast to the “best effort” approach today. We study and analyze queueing policies for network switches that support the QoS (Quality of Service) feature. One realization of the QoS feature is that packets are not necessarily all equal, with some having higher priorities than the others. We model this situation by assigning an intrinsic value to each packet. In this paper we are concerned with three different queueing policies: the nonpreemptive model, the FIFO preemptive model, and the bounded delay model. We concentrate on the situation where the incoming traffic overloads the queue, resulting in packet loss. The objective is to maximize the total value of packets transmitted by the queueing policy. The difficulty lies in the unpredictable nature of the future packet arrivals. We analyze the performance of the online queueing policies via competitive analysis, providing upper and lower bounds for the competitive ratios. We develop practical yet sophisticated online algorithms (queueing policies) for the three queueing models. The algorithms in many cases have provably optimal worst-case bounds. For the nonpreemptive model, we devise an optimal online algorithm for the common 2-value model. We provide a tight logarithmic bound for the general nonpreemptive model. For the FIFO preemptive model, we improve the general lower bound to 1.414, while showing a tight bound of 1.434 for the special case of queue size 2. We prove that the bounded delay model with uniform delay 2 is equivalent to a modified FIFO preemptive model with queue size 2. We then give improved upper and lower bounds on the 2-uniform bounded delay model. We also show an improved lower bound of 1.618 for the 2-variable bounded delay model, matching the previously known upper bound.  相似文献   

2.
This paper is concerned with the problem of optimal M-alternative determination of quantum statistical states. A review of newest achievement of solving this problem is given. A notion of an effective decision Hilbert space is introduced and necessary and sufficient condkions for optimality of multiple quantum hypothesis testing in this space are formulated. The general solution is found for the case of a two-dimensional decision space. Another problem solved is that of discrimination of quantum pure non-orthogonal states. The result is represented in explicit analytical form for an "equidiagonal" case, which is quite general. In particular, we find explicit solutions of optimal discrimination problem of homogeneous and equiangle sets of pure states. These results are used for the M-ary detection problem in solving for the quantum coherent non-orthogonal signals. It is proved that the simplex signals are optimal elso in quantum case. The optimal estimatesof phaseandamplitude of quantum coherent signals are found. For decision operators a notion of IT-representation is introduced to get a general quasi-classical (optimal in quasi-classical limit) M-ary detection procedure of stochastic fields and particles, which submits to Bose-Einstein statistics. An optimal solution of problem of non-coherent detection of quantum stochastic (including optical) signals are found in the extreme quantum limit (weaknoise and signals with unknown phase).  相似文献   

3.
Up to this time, the only known method to solve the discrete-time mixed sensitivity minimization problem inl 1 has been to use a certain infinite-dimensional linear programming approach, presented by Dahleh and Pearson in 1988 and later modified by Mendlovitz. That approach does not give in general true optimal solutions; only suboptimal ones are obtained. Here, for the first time, the truel 1-optimal solutions are found for some mixed sensitivity minimization problems. In particular, Dahleh and Pearson construct an 11h order suboptimal compensator for a certain second-order plan with first-order weight functions; it is shown that the unique optimal compensator for that problem is rational and of order two. The author discovered this fact when trying out a new scheme of solving the infinite-dimensional linear programming system. This scheme is of independent interest, because when it is combined with the Dahleh-Pearson-Mendlovitz scheme, it gives both an upper bound and a lower bound on the optimal performance; hence, it provides the missing error bound that enables one to truncate the solution. Of course, truncation is appropriate only if the order of the optimal compensator is too high. This may indeed be the case, as is shown with an example where the order of the optimal compensator can be arbitrarily high.  相似文献   

4.
A connected covering is a design system in which the corresponding block graph is connected. The minimum size of such coverings are called connected coverings numbers. In this paper, we present various formulas and bounds for several parameter settings for these numbers. We also investigate results in connection with Turán systems. Finally, a new general upper bound, improving an earlier result, is given. The latter is used to improve upper bounds on a question concerning oriented matroid due to Las Vergnas.  相似文献   

5.
We consider the multiple lot sizing problem in production systems with random process yield losses governed by the interrupted geometric (IG) distribution. Our model differs from those of previous researchers which focused on the IG yield in that we consider a finite number of setups and inventory holding costs. This model particularly arises in systems with large demand sizes. The resulting dynamic programming model contains a stage variable (remaining time till due) and a state variable (remaining demand to be filled) and therefore gives considerable difficulty in the derivation of the optimal policy structure and in numerical computation to solve real application problems. We shall investigate the properties of the optimal lot sizes. In particular, we shall show that the optimal lot size is bounded. Furthermore, a dynamic upper bound on the optimal lot size is derived. An O(nD) algorithm for solving the proposed model is provided, where n and D are the two-state variables. Numerical results show that the optimal lot size, as a function of the demand, is not necessarily monotone.  相似文献   

6.

Multi-stage stochastic linear programs (MSLPs) are notoriously hard to solve in general. Linear decision rules (LDRs) yield an approximation of an MSLP by restricting the decisions at each stage to be an affine function of the observed uncertain parameters. Finding an optimal LDR is a static optimization problem that provides an upper bound on the optimal value of the MSLP, and, under certain assumptions, can be formulated as an explicit linear program. Similarly, as proposed by Kuhn et al. (Math Program 130(1):177–209, 2011) a lower bound for an MSLP can be obtained by restricting decisions in the dual of the MSLP to follow an LDR. We propose a new approximation approach for MSLPs, two-stage LDRs. The idea is to require only the state variables in an MSLP to follow an LDR, which is sufficient to obtain an approximation of an MSLP that is a two-stage stochastic linear program (2SLP). We similarly propose to apply LDR only to a subset of the variables in the dual of the MSLP, which yields a 2SLP approximation of the dual that provides a lower bound on the optimal value of the MSLP. Although solving the corresponding 2SLP approximations exactly is intractable in general, we investigate how approximate solution approaches that have been developed for solving 2SLP can be applied to solve these approximation problems, and derive statistical upper and lower bounds on the optimal value of the MSLP. In addition to potentially yielding better policies and bounds, this approach requires many fewer assumptions than are required to obtain an explicit reformulation when using the standard static LDR approach. A computational study on two example problems demonstrates that using a two-stage LDR can yield significantly better primal policies and modestly better dual policies than using policies based on a static LDR.

  相似文献   

7.
In this paper, a new variable reduction technique is presented for general integer quadratic programming problem (GP), under which some variables of (GP) can be fixed at zero without sacrificing optimality. A sufficient condition and a necessary condition for the identification of dominated terms are provided. By comparing the given data of the problem and the upper bound of the variables, if they meet certain conditions, some variables can be fixed at zero. We report a computational study to demonstrate the efficacy of the proposed technique in solving general integer quadratic programming problems. Furthermore, we discuss separable integer quadratic programming problems in a simpler and clearer form.  相似文献   

8.
Estimation of a quadratic functional of a function observed in the Gaussian white noise model is considered. A data-dependent method for choosing the amount of smoothing is given. The method is based on comparing certain quadratic estimators with each other. It is shown that the method is asymptotically sharp or nearly sharp adaptive simultaneously for the “regular” and “irregular” region. We consider lp bodies and construct bounds for the risk of the estimator which show that for p=4 the estimator is exactly optimal and for example when p ∈[3,100], then the upper bound is at most 1.055 times larger than the lower bound. We show the connection of the estimator to the theory of optimal recovery. The estimator is a calibration of an estimator which is nearly minimax optimal among quadratic estimators. Writing of this article was financed by Deutsche Forschungsgemeinschaft under project MA1026/6-2, CIES, France, and Jenny and AnttiWihuri Foundation.  相似文献   

9.
In this paper, we discuss combining expert knowledge and computer simulators in order to provide decision support for policy makers managing complex physical systems. We allow future states of the complex system to be viewed after initial policy is made, and for those states to influence revision of policy. The potential for future observations and intervention impacts heavily on optimal policy for today and this is handled within our approach. We show how deriving policy dependent system uncertainty using computer models leads to an intractable backwards induction problem for the resulting decision tree. We introduce an algorithm for emulating an upper bound on our expected loss surface for all possible policies and discuss how this might be used in policy support. To illustrate our methodology, we look at choosing an optimal CO2 abatement strategy, combining an intermediate complexity climate model and an economic utility model with climate data.  相似文献   

10.
Anexample of a maximal partial spread of size 45 in PG(3,7)is given. This example shows that a conjecture of Bruen and Thasfrom 1976 is false. It also shows that an upper bound for thenumber of lines of a maximal partial spread, given by Blockhuisin 1994, cannot be improved in general.  相似文献   

11.
In this article, first we find the number of idempotents and the zero-divisors of a matrix ring over a finite field F. Next, given the order of the Jacobson radical of the finite unital ring R, we find the number of units, nilpotents and zero-divisors of R. Moreover, we find an upper bound for the number of idempotents of a finite ring which is in general smaller than the upper bound found by MacHale [Proc. R. Ir. 1982;82A(1):9–12]. Finally, we find the above-mentioned numbers in some matrix rings and quaternion rings.  相似文献   

12.
This paper deals with nonparametric regression estimation under arbitrary sampling with an unknown distribution. The effect of the distribution of the design, which is a nuisance parameter, can be eliminated by conditioning. An upper bound for the conditional mean squared error of kNN estimates leads us to consider an optimal number of neighbors, which is a random function of the sampling. The corresponding estimate can be used for nonasymptotic inference and is also consistent under a minimal recurrence condition. Some deterministic equivalents are found for the random rate of convergence of this optimal estimate, for deterministic and random designs with vanishing or diverging densities. The proposed estimate is rate optimal for standard designs.  相似文献   

13.
This paper presents an extension of an earlier integer programming model developed by other authors to formulate a general n-job, m-machine job-shop problem. The new formulation involves substantially fewer functional constraints at the expense of an increase in the number of upper bound variables. This reduction of functional constraints, together with the imposition of upper and lower bounds on the objective value, significantly reduces the computation time for solving the integer model for the job-shop scheduling problem.  相似文献   

14.
Global solution of nonlinear mixed-integer bilevel programs   总被引:1,自引:0,他引:1  
An algorithm for the global optimization of nonlinear bilevel mixed-integer programs is presented, based on a recent proposal for continuous bilevel programs by Mitsos et al. (J Glob Optim 42(4):475–513, 2008). The algorithm relies on a convergent lower bound and an optional upper bound. No branching is required or performed. The lower bound is obtained by solving a mixed-integer nonlinear program, containing the constraints of the lower-level and upper-level programs; its convergence is achieved by also including a parametric upper bound to the optimal solution function of the lower-level program. This lower-level parametric upper bound is based on Slater-points of the lower-level program and subsets of the upper-level host sets for which this point remains lower-level feasible. Under suitable assumptions the KKT necessary conditions of the lower-level program can be used to tighten the lower bounding problem. The optional upper bound to the optimal solution of the bilevel program is obtained by solving an augmented upper-level problem for fixed upper-level variables. A convergence proof is given along with illustrative examples. An implementation is described and applied to a test set comprising original and literature problems. The main complication relative to the continuous case is the construction of the parametric upper bound to the lower-level optimal objective value, in particular due to the presence of upper-level integer variables. This challenge is resolved by performing interval analysis over the convex hull of the upper-level integer variables.  相似文献   

15.
In this paper, we are concerned about optimal (v, 4, 3, 2)‐OOCs. A tight upper bound on the exact number of codewords of optimal (v, 4, 3, 2)‐OOCs and some direct and recursive constructions of optimal (v, 4, 3, 2)‐OOCs are given. As a result, the exact number of codewords of an optimal (v, 4, 3, 2)‐OOC is determined for some infinite series.  相似文献   

16.
In optimal control problems frequently pointwise control constraints appear. We consider a finite string that is fixed at one end and controlled via Dirichlet conditions at the other end with a given upper bound M for the L -norm of the control. The problem is to control the string to the zero state in a given finite time. If M is too small, no feasible control exists. If M is large enough, the optimal control problem to find an admissible control with minimal L 2-norm has a solution that we present in this paper.  相似文献   

17.
In this paper we demonstrate how to develop analytic closed form solutions to optimal multiple stopping time problems arising in the setting in which the value function acts on a compound process that is modified by the actions taken at the stopping times. This class of problem is particularly relevant in insurance and risk management settings and we demonstrate this on an important application domain based on insurance strategies in Operational Risk management for financial institutions. In this area of risk management the most prevalent class of loss process models is the Loss Distribution Approach (LDA) framework which involves modelling annual losses via a compound process. Given an LDA model framework, we consider Operational Risk insurance products that mitigate the risk for such loss processes and may reduce capital requirements. In particular, we consider insurance products that grant the policy holder the right to insure k of its annual Operational losses in a horizon of T years. We consider two insurance product structures and two general model settings, the first are families of relevant LDA loss models that we can obtain closed form optimal stopping rules for under each generic insurance mitigation structure and then secondly classes of LDA models for which we can develop closed form approximations of the optimal stopping rules. In particular, for losses following a compound Poisson process with jump size given by an Inverse-Gaussian distribution and two generic types of insurance mitigation, we are able to derive analytic expressions for the loss process modified by the insurance application, as well as closed form solutions for the optimal multiple stopping rules in discrete time (annually). When the combination of insurance mitigation and jump size distribution does not lead to tractable stopping rules we develop a principled class of closed form approximations to the optimal decision rule. These approximations are developed based on a class of orthogonal Askey polynomial series basis expansion representations of the annual loss compound process distribution and functions of this annual loss.  相似文献   

18.
The article considers a three‐dimensional crack problem in linear elasticity with Dirichlet boundary conditions. The crack in this model problem is assumed to be a smooth open surface with smooth boundary curve. The hp‐version of the boundary element method with weakly singular operator is applied to approximate the unknown jump of the traction which is not L2‐regular due to strong edge singularities. Assuming quasi‐uniform meshes and uniform distributions of polynomial degrees, we prove an a priori error estimate in the energy norm. The estimate gives an upper bound for the error in terms of the mesh size h and the polynomial degree p. It is optimal in h for any given data and quasi‐optimal in p for sufficiently smooth data. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

19.
An a posteriori error estimator is presented for the boundary element method in a general framework. It is obtained by solving local residual problems for which a local concept is introduced to accommodate the fact that integral operators are nonlocal operators. The estimator is shown to have an upper and a lower bound by the constant multiples of the exact error in the energy norm for Symm's and hypersingular integral equations. Numerical results are also given to demonstrate the effectiveness of the estimator for these equations. It can be used for adaptive h,p, and hp methods.  相似文献   

20.
We discuss in this paper statistical inference of sample average approximations of multistage stochastic programming problems. We show that any random sampling scheme provides a valid statistical lower bound for the optimal (minimum) value of the true problem. However, in order for such lower bound to be consistent one needs to employ the conditional sampling procedure. We also indicate that fixing a feasible first-stage solution and then solving the sampling approximation of the corresponding (T–1)-stage problem, does not give a valid statistical upper bound for the optimal value of the true problem.Supported, in part, by the National Science Foundation under grant DMS-0073770.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号