首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
针对星上激光通信终端二维转台的精确控制,设计了实时测量转台旋转角度的专用型光电角度编码器。根据星载激光通信终端所需测角系统的设计指标,分别对光电角度编码器的码盘、指示光栅及光电信号的提取方法进行了设计和选择。其中,格林二进制绝对式编码结合高质量的电子学细分,实现了编码器24位的绝对角度测量;四象限矩阵编码方式有效地减小了码盘的径向尺寸;分体读数头式指示光栅较整周玻璃盘大幅度压缩了体积和重量。在室温条件下对安装在星载激光通信终端上的光电角度编码器进行了测角精度检测。结果表明:该测角系统的角度测量精度约为0.7″(优于1.0″)。激光通信终端设备的在轨稳定运行及捕获、跟踪和通信功能的正常发挥,进一步验证了所设计的光电角度编码器测角精度高、抗辐射能力强、工作可靠性高,满足星载激光通信终端设备的应用要求。  相似文献   

2.
小型绝对式矩阵编码器   总被引:10,自引:0,他引:10  
绝对式编码器具有固定起始点、读数可靠等优点。但传统的绝对式编码器码道圈数多,结构尺寸大,给某些方面的应用带来不便,希望结构尺寸小。本文介绍一种小型绝对式编码器的设计方法,其中包括:绝对式矩阵编码盘的设计;工作原理;矩阵译码方法。传统的14位绝对式编码器最小径向尺寸为φ130mm,而采用矩阵式编码盘,同样位数的编码器径向尺寸可缩小到φ65mm。  相似文献   

3.
双读数系统的航天级绝对式光电编码器设计   总被引:5,自引:1,他引:4  
为了有效地减小航天相机的体积,减轻其重量并满足冷备份要求,设计了双读数系统的航天级绝对式光电编码器.根据航天相机的要求,对绝对式光学码盘进行了小型化设计;根据码盘的特点,研制了双读数狭缝盘及读数系统;最后,对设计的双读数系统的航天级绝对式光电编码器进行了精度检测.实验结果表明:双读数系统的航天级绝对式光电编码器外形尺寸为50 mm×32 mm、重量为150 g、分辨力为20″、精度σ≤30″.本编码器具有读数系统冷备份功能,且体积小、重量轻、抗干扰能力强,可满足航天相机的要求.  相似文献   

4.
双读数系统的天基绝对式光电编码器设计   总被引:1,自引:0,他引:1  
为了有效地减小航天相机的体积、减轻其重量并满足冷备份要求,设计了双读数系统的天基绝对式光电编码器。首先,根据航天相机的要求,对绝对式光学码盘进行了小型化设计;然后,根据码盘的特点设计了双读数狭缝盘及读数系统;最后,对设计的双读数系统的天基绝对式光电编码器进行了精度检测。实验结果表明:双读数系统的天基绝对式光电编码器外形尺寸为f50 mm×32 mm、重量为150g、分辨力为20″、精度为σ≤30″。本编码器具有读数系统冷备份功能,且体积小、重量轻、抗干扰能力强、满足航天相机的要求。  相似文献   

5.
航天级光电编码器的信号处理系统设计   总被引:10,自引:1,他引:9  
为了实现航天级光电编码器的小型化,减小航天设备的体积、重量并满足其冷备份要求,设计了具有双读数系统的航天级光电编码器信号处理系统。首先,介绍了双读数系统航天级光电编码器的精码和粗码信号处理方法以及信号处理系统的小型化和可靠性设计;然后,从光电编码器误差产生的原因及空间分布特征出发,对双读数系统航天级光电编码器进行了精度分析;最后,采用比较法,以23位高精度光电编码器作为角度基准,对该光电编码器进行了精度检测。实验结果表明:应用该信号处理系统的双读数系统光电编码器的分辨力为20″,精度σ≤30″。该系统已在工程项目中得到应用,实践表明系统的设计满足航天设备的技术要求。  相似文献   

6.
针对当今对编码器小型化、高分辨力、高精度化的要求提出了一种新型多矩阵编码器,研究并设计了多矩阵光电编码器的新型码道图案、光电读数头布置方式和A/D细分电路,在不增加编码器体积与半径的情况下,增加分辨力,提高读数精度,减少读数误差。并且根据实际工作要求分别研究并设计了大小两型多矩阵编码器,分辨力分别为20位与12位,体积分别为φ420×16mm与φ25×16mm,经A/D细分,精度可达10000细分,对于编码器的在国防、航空、航天等高精尖领域具有重要实际意义。  相似文献   

7.
为了提高光电编码器的抗强冲击振动性能,设计了一种新型的小型绝对式金属光电编码盘.首先介绍了小型金属光电编码器的工作原理;然后采用单圈循环格雷码的编码方式,在1圈码道上实现0°~360°的全量程绝对编码,设计出绝对式金属码盘;最后依据金属码盘码道的排列方式及精码、粗码信息的采集要求设计出金属狭缝盘.码盘及狭缝盘基底材料采用不锈钢,通过采用电子学细分技术、精粗校正可使编码器分辨力达到5.27″.小型绝对式金属光电编码器具有成本低、抗冲击性强、分辨力高等特点,在强冲击、强振动工作环境及对体积质量有严苛要求的场合具有很高的应用价值.  相似文献   

8.
高分辨力面阵图像式光电编码器的测角技术   总被引:2,自引:0,他引:2  
为实现面阵图像式光电编码器的小型化及高分辨力,研究了面阵图像式光电编码器的码盘编码和基于图像处理技术的精码细分算法.首先根据光电编码器的性能指标要求设计相应的码盘尺寸;然后通过图像传感器采集随轴系转动的码盘图样;微处理器接收图像数据,通过图形识别算法得到粗码角度,并采用改进的基准线质心算法,计算亚像素级的精码角度信息.最后由粗码和精码组成光电编码器测角数据.实验结果表明,设计码盘直径为φ45 mm的面阵图像式光电编码器,在不配备光学镜头的前提下,采用研究的精码细分技术,可实现4 096份细分,测角分辨力达到5″,角度误差峰峰值为61″.该面阵图像式光电编码器和精码细分技术可以提高编码器的分辨力,缩小编码器体积,减轻重量.适用于航空航天领域对小型化光电编码器的需求.  相似文献   

9.
为了解决绝对式编码器的编码盘复杂,增量式编码器不能获取绝对位置信息的问题,设计了一种具有2组码道的非接触角度测量的电容式旋转编码器。编码器包括2个定子和1个转子,由FPGA产生的4路相位差90°的高频方波信号作用在定子的发射极上,转子具有正弦轮廓,可将角度位置编码为基于正交调制的相位/频率调制信号,然后利用FPGA和DSP将调制信号数字化解码到角位置,最后通过RS485将数字角度位置传输到计算机上,实现了绝对角位移的在线检测。实验结果表明:设计的编码器工作可靠,测量稳定。  相似文献   

10.
郑卫  张波  刘品宽 《机电一体化》2012,18(4):40-44,48
提出了一种新型的准绝对式光电编码器及其解码系统,具有精度高、结构紧凑、输出结果可靠等优点。介绍了该码盘编码特点及数学原理,实现了伪随机电流信号的采集、转换和传输,并在现场可编程门阵列(field-programmablegatearray,FPGA)中分别设计了采用12位和24位移位寄存器的解码器系统。实验结果表明,构建的整个系统工作稳定,输出结果可靠。  相似文献   

11.
一种新型光学编码器   总被引:8,自引:2,他引:6  
光学编码器是长度和角度测量最常用的传感器,两种传统光学编码器:绝对式和增量式光学编码器的光学图案、位置编码原理和信号处理电路各具特色,随着科学技术的发展,一种新型光学编码器方案:准绝对式编码器,继承了二者的优点,根据其串行位置编码原理,借助计算机辅助设计,获得了全周100个位置的编码方案,设计了相应的准绝对式编码器;通过与两种传统编码器特点的比较,突出了准绝对式光学编码器的显著特点,指明了其未来良好的应用和发展前景.  相似文献   

12.
增量式光学编码器在制造与安装的过程中不可避免的会出现刻线误差和细分误差,这些误差会降低角度测量的精度并导致瞬时角速度(IAS)信号波动,研究刻线与细分误差的补偿途径有重要意义,但现有方法存在误差补偿效率低,不易现场应用等局限。针对上述问题,本文首先对增量式光学编码器的刻线误差与细分误差进行分析并建立误差模型,揭示了刻线误差、细分误差与IAS信号波动之间的联系。在此基础上提出了一种使用IAS信号对增量式光学编码器刻线与细分误差进行补偿的方法,该方法具有效率高、无需对编码器进行改装等优点。通过仿真分析对本文所建立的误差模型的正确性与误差估计方法的可行性进行了验证,并在RV传动实验台上对伺服电机末端的增量式光学编码器进行刻线与细分误差补偿,最后使用光学旋转平台对增量式光学编码器误差进行测量,通过对比分析验证了本文所提方法的有效性。  相似文献   

13.
绝对式多极磁电轴角编码器的设计   总被引:1,自引:0,他引:1  
为了实现多对极磁电式轴角编码器的高分辨率绝对式检测并降低其成本,基于改进格雷码构建了一种新型多极磁电轴角编码器模型,提出一种基于校准查表的信号处理方式,以消除磁场非线性和装配误差对测量精度的影响。设计了两个由永磁体磁环构成的码道:粗码道,根据改进格雷码生成N和S极充磁顺序,采用圆周均匀分布的线性霍尔元件得到转子所处磁极区域的绝对偏移量;细分码道,N和S极等距间隔排列,定子上3个线性霍尔元件将磁信号转换为电信号,查表得到转子于所处信号周期内的相对偏移量。在离线状态下,用高分辨率的增量式光电轴角编码器进行校准,对其A/B相脉冲输出和磁电式轴角编码器的霍尔信号同时采样并上传到计算机进行高精度信号重构,得到标准角位移和霍尔信号映射关系,通过单片机的自编程技术将数据存储于主控芯片中固定地址以供查表;角位移检测状态下,根据霍尔信号查表得到绝对角位移。根据上述原理研制出12极磁电式轴角编码器样机,实现了分辨率为±0.72′,精度达±1.2′以下的单圈绝对位置检测。该编码器通过增加磁极数还可进一步提高测量精度。  相似文献   

14.
为实现快速、高精度角位移测量,提出了一种单圈绝对式电子经纬仪测角信号处理算法。只需刻画脉冲左右边沿在阈值附近各2个采样点就可以快速估计出脉冲宽度和脉冲中心坐标;对现有文献细分方法进行改进,给出了基于多组刻画脉冲中心求解高分辨力细分角的公式;并对算法时间复杂度和抗噪声性能分别进行了分析与仿真。实验结果表明,本方法在水平方向上测角误差标准差仅为2.5″,平均每秒钟可测角输出25次,具有实现简单、只需较少计算量就可以获得较高测量精度的优点。研究结果可以为单圈绝对式电子经纬仪、全站仪提供一种新的测角信号处理实用方法。  相似文献   

15.
This paper introduces a new method of interpolation for sub-nanometer-resolution linear encoders. This method, called SPPE (scanning position probe encoder), uses high-order harmonics information obtained by a sinusoidal scanning pickup located on a periodic grating surface. The proposed encoder uses a current-modulated laser diode with diffractive grating optics. Since the electrical current changes the laser-diode wavelength, the interference light intensity is modulated as a sinusoidal scanning pickup on the scale grating. Phase-detection circuits can decode the position information in the pickup signal by using phase-locked loop techniques. The decoder achieves an interpolation rate of over 1/40,000 with interpolation errors of less than ±1 nm. A new interpolation-error measuring system was developed for the encoder. Finally, the evaluation results reveal that the presented encoder shows both high resolution and strong robustness.  相似文献   

16.
A new design concept of a multi-turn absolute rotary encoder which is insensitive to the accuracy of encoder components is proposed. This new design does not demand high accuracy of the encoder structure other than the fundamental pattern to produce the least significant digit. The allowable error in the encoder structure is compensated by electronic light circuits. This absolute encoder has been applied to the measurement of height position in a cylindrical form-measuring system. The new encoders can be connected in series by reduction gears whose accuracy is fairly rough, so that a multi-turn device in realized. The allowable tolerances in the encoder structure are presented.  相似文献   

17.
介绍了一种基于AT89C52单片机的接口装置的硬件及软件设计,实现对绝对式光电编码器的数据采集、转换、显示及输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号