首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimum machining parameters are of great concern in manufacturing environments, where economy of machining operation plays a key role in competitiveness in the market. Many researchers have dealt with the optimization of machining parameters for turning operations with constant diameters only. All Computer Numerical Control (CNC) machines produce the finished components from the bar stock. Finished profiles consist of straight turning, facing, taper and circular machining.This research work concentrates on optimizing the machining parameters for turning cylindrical stocks into continuous finished profiles. The machining parameters in multi-pass turning are depth of cut, cutting speed and feed. The machining performance is measured by the production cost.In this paper the optimal machining parameters for continuous profile machining are determined with respect to the minimum production cost subject to a set of practical constraints. The constraints considered in this problem are cutting force, power constraint, tool tip temperature, etc. Due to high complexity of this machining optimization problem, six non-traditional algorithms, the genetic algorithm (GA), simulated annealing algorithm (SA), Tabu search algorithm (TS), memetic algorithm (MA), ants colony algorithm (ACO) and the particle swarm optimization (PSO) have been employed to resolve this problem. The results obtained from GA, SA,TS, ACO, MA and PSO are compared for various profiles. Also, a comprehensive user-friendly software package has been developed to input the profile interactively and to obtain the optimal parameters using all six algorithms. New evolutionary PSO is explained with an illustration .  相似文献   

2.
Optimization of multi-pass turning using particle swarm intelligence   总被引:1,自引:1,他引:0  
This paper proposes a methodology for selecting optimum machining parameters in multi-pass turning using particle swarm intelligence. Often, multi-pass turning operations are designed to satisfy several practical cutting constraints in order to achieve the overall objective, such as production cost or machining time. Compared with the standard handbook approach, computer-aided optimization procedures provide rapid and accurate solutions in selecting the cutting parameters. In this paper, a non-conventional optimization technique known as particle swarm optimization (PSO) is implemented to obtain the set of cutting parameters that minimize unit production cost subject to practical constraints. The dynamic objective function approach adopted in the paper resolves a complex, multi-constrained, nonlinear turning model into a single, unconstrained objective problem. The best solution in each generation is obtained by comparing the unit production cost and the total non-dimensional constraint violation among all of the particles. The methodology is illustrated with examples of bar turning and a component of continuous form.  相似文献   

3.
Empirical models for machining time and surface roughness are described for exploring optimized machining parameters in turning operation. CNC turning machine was employed to conduct experiments on brass, aluminum, copper, and mild steel. Particle swarm optimization (PSO) has been used to find the optimal machining parameters for minimizing machining time subjected to desired surface roughness. Physical constraints for both experiment and theoretical approach are cutting speed, feed, depth of cut, and surface roughness. It is observed that the machining time and surface roughness based on PSO are nearly same as that of the values obtained based on confirmation experiments; hence, it is found that PSO is capable of selecting appropriate machining parameters for turning operation.  相似文献   

4.
Simulated annealing, genetic algorithm, and particle swarm optimization techniques have been used for exploring optimal machining parameters for single pass turning operation, multi-pass turning operation, and surface grinding operation. The behavior of optimization techniques are studied based on various mathematical models. The objective functions of the various mathematical models are distinctly different from each other. The most affecting machining parameters are considered as cutting speed, feed, and depth of cut. Physical constraints are speed, feed, depth of cut, power limitation, surface roughness, temperature, and cutting force.  相似文献   

5.
In this paper, the optimization of cutting parameters for constrained machining operations is reported. Modified genetic algorithm (MGA) is an evolutionary computation technique that has been proposed in this paper to solve the machining problem. Additional constraints have been incorporated to the multipass turning model. The optimization of drilling and facing parameters have also been carried out. To demonstrate the procedure and performance of the approach, an illustrative example is discussed. The results of the proposed algorithm are compared with other traditional and non-traditional techniques such as Newton’s method, hill climbing and ants colony technique.  相似文献   

6.
In this paper, to facilitate manufacturing engineers have more control on the machining operations, the optimization issue of machining parameters is handled as a multi-objective optimization problem. The optimization strategy is to simultaneously minimize production time and cost and maximize profit rate meanwhile subject to satisfying the constraints on the machine power, cutting force, machining speed, feed rate, and surface roughness. An efficient fuzzy global and personal best-mechanism-based multi-objective particle swarm optimization (F-MOPSO) to optimize the machining parameters is developed to solve such a multi-objective optimization problem in optimization of multi-pass face milling. The proposed F-MOPSO algorithm is first tested on several benchmark problems taken from the literature and evaluated with standard performance metrics. It is found that the F-MOPSO does not have any difficulty in achieving well-spread Pareto optimal solutions with good convergence to true Pareto optimal front for multi-objective optimization problems. Upon achieving good results for test cases, the algorithm was employed to a case study of multi-pass face milling. Significant improvement is indeed obtained in comparison to the results reported in the literatures. The proposed scheme may be effectively employed to the optimization of machining parameters for multi-pass face milling operations to obtain efficient solutions.  相似文献   

7.
切削用量的合理选择对提高机床使用效率、降低生产成本有很大的帮助。根据线性加权和法,以进给量和切削速度为变量,以最大生产率和最低生产成本为目标建立优化数学模型,并且考虑机床和刀具的约束,利用粒子群算法在MATLAB上对数学模型进行寻优求解。实例表明,优化后的切削用量能明显地降低成本、提高效率。  相似文献   

8.
9.
In this paper, the optimization of multi-pass milling has been investigated in terms of two objectives: machining time and production cost. An advanced search algorithm—parallel genetic simulated annealing (PGSA)—was used to obtain the optimal cutting parameters. In the implementation of PGSA, the fitness assignment is based on the concept of a non-dominated sorting genetic algorithm (NSGA). An application example is given using PGSA, which has been used to find the optimal solutions under four different axial depths of cut on a 37 SUN workstation network simultaneously. In a single run, PGSA can find a Pareto-optimal front which is composed of many Pareto-optimal solutions. A weighted average strategy is then used to find the optimal cutting parameters along the Pareto-optimal front. Finally, based on the concept of dynamic programming, the optimal cutting strategy has been obtained.  相似文献   

10.
在数控车削中,降低工件加工成本具有重要的实际意义,但如何选择合理的车削参数以达到最小化加工成本是一个多约束非线性的复杂优化问题。针对该问题,提出基于边缘分布估计的UMDArp和UMDAp算法。在接近实际加工约束条件下,同时优化粗精车削参数,选出合适的加工参数组合(粗切削速度、粗进给量、粗车量、粗车次数、精切削速度、精进给量和精车量)。同时,使用基因修复策略和惩罚函数相结合的约束处理方法,进一步提高算法寻优性能。计算机模拟表明,UMDArp算法能搜索到比以往提出的启发性算法更优的车削参数组合,从而减小加工开销。  相似文献   

11.
The economics of machining have been of interest to many researchers. Many researchers have dealt with the optimisation of machining parameters for turning operations with constant diameters only. All CNC machines produce finished components from bar stock. Finished profiles consist of straight turning, facing, taper and circular machining. This research concentrates on optimising the machining parameters for turning cylindrical stock into continuous finished profiles. Arriving at a finished profile from a cylindrical stock is done in two stages, rough machining and finish machining. Rough machining consists of multiple passes and finish machining consists of single-pass contouring after the stock is removed in rough machining. The machining parameters in multipass turning are depth of cut, cutting speed and feed. The machining performance is measured by the production cost. In this paper the optimal machining parameters for continuous profile machining are determined with respect to the minimum production cost, subject to a set of practical con-straints. The constraints considered in this problem are cutting force, power constraint and tool tip temperature. Due to high complexity of this machining optimisation problem, a simulated annealing (SA) and genetic algorithm (GA) are applied to resolve the problem. The results obtained from GA and SA are compared. ID="A2"Correspondance and offprint requests to: Dr P. Asokan, Department of Production Engineering, Regional Engineering College, Tiruchirap–palli–620 015, Tamil Nadu, India. E-mail: asokan@rect.ernet.in  相似文献   

12.
In this paper, a simple methodology to distribute the total stock removal in each of the rough passes and the final finish pass and a fuzzy particle swarm optimization (FPSO) algorithm based on fuzzy velocity updating strategy to optimize the machining parameters are proposed and implemented for multi-pass face milling. The optimum value of machining parameters including number of passes, depth of cut in each pass, speed, and feed is obtained to achieve minimum production cost while considering technological constraints such as allowable machine power, machining force, machining speed, tool life, feed rate, and surface roughness. The proposed FPSO algorithm is first tested on few benchmark problems taken from the literature. Upon achieving good results for test cases, the algorithm was employed to two illustrative case studies of multi-pass face milling. Significant improvement is also obtained in comparison to the results reported in the literatures, which reveals that the proposed methodology for distribution of the total stock removal in each of passes is effective, and the proposed FPSO algorithm does not have any difficulty in converging towards the true optimum. From the given results, the proposed schemes may be a promising tool for the optimization of machining parameters.  相似文献   

13.
Our goal is to propose a useful and effective method to determine optimal machining parameters in order to minimize surface roughness, resultant cutting forces and maximize tool life in the turning process. At first, three separate neural networks were used to estimate outputs of the process by varying input machining parameters. Then, these networks were used as optimization objective functions. Moreover, the proposed algorithm, namely, GA and PSO were utilized to optimize each of the outputs, while the other outputs would also be kept in the suitable range. The obtained results showed that by using trained neural networks with genetic algorithms as optimization objective functions, a powerful model would be obtained with high accuracy to analyze the effect of each parameter on the output(s) and optimally estimate machining conditions to reach minimum machining outputs.  相似文献   

14.
The heat-resistant super alloy material like Inconel 718 machining is an inevitable and challenging task even in modern manufacturing processes. This paper describes the genetic algorithm coupled with artificial neural network (ANN) as an intelligent optimization technique for machining parameters optimization of Inconel 718. The machining experiments were conducted based on the design of experiments full-factorial type by varying the cutting speed, feed, and depth of cut as machining parameters against the responses of flank wear and surface roughness. The combined effects of cutting speed, feed, and depth of cut on the performance measures of surface roughness and flank wear were investigated by the analysis of variance. Using these experimental data, the mathematical model and ANN model were developed for constraints and fitness function evaluation in the intelligent optimization process. The optimization results were plotted as Pareto optimal front. Optimal machining parameters were obtained from the Pareto front graph. The confirmation experiments were conducted for the optimal machining parameters, and the betterment has been proved.  相似文献   

15.
For metallic or composite materials, the judicious choice of cutting conditions depends on several factors that may be of such objectives (time, cost of production, material removal rate, etc.) or constraints (cutting force, temperature in the machining area, consumed power, etc.). The quality of the results depends on the optimization method and the efficiency of the algorithm involved. In this paper, graphical and particle swarm optimization (PSO) methods are proposed. They aim to determine the optimal cutting conditions (cutting speed and feed per tooth) in slotting of multidirectional carbon fiber reinforced plastic laminate (CFRP), referenced G803/914, with three knurled tools having different geometries. The experiences that led to the measures of roughness, temperature, cutting efforts, and consumed power are made in the same working conditions with cutting speed ranging from 80 to 200 m/min and feed per tooth from 0.008 to 0.060 mm/rev/tooth. The results illustrate that for the graphical method, the optimum cutting speed depends on the performance “maximum total removal rate” and is the same for all the studied knurled tools while optimum feed per tooth depends on the “roughness” performance: its value depends on the tool geometry. For the PSO technique, optimum cutting speed and feed per tooth values are variable and depend on the tool geometry.  相似文献   

16.
Precision hard machining is an interesting topic in manufacturing die and mold, automobile parts, and scientific research. While the hard machining has benefit advantages such as short cutting cycle time, process flexibility, and low surface roughness, there are several disadvantages such as high tooling cost, need of rigid machine tool, high cutting stresses, and residual stresses. Especially, tool stresses should be understood and dealt with to achieve successful performance of finish hard turning with ceramic cutting tool. So, the influence of cutting parameters on cutting stresses during dry finish turning of hardened (52 HRC) AISI H13 hot work steel with ceramic tool is investigated in this paper. For this aim, a series finish turning tests were performed, and the cutting forces were measured in tests. After literature procedure about finite element model (FEM), FEM is established to predict cutting stresses in finish turning of hardened AISI H13 steel with Ceramic 650 grade insert. As shown, effect of the cutting parameters on cutting tool stresses in finish turning of AISI H13 steel is obtained. The suggested results are helpful for optimizing the cutting parameters and decreasing the tool failure in finish turning applications of hardened steel.  相似文献   

17.
This paper envisages the multi-response optimization of machining parameters in hot turning of stainless steel (type 316) based on Taguchi technique. The workpiece heated with liquid petroleum gas flame burned with oxygen was machined under different parameters, i.e., cutting speed, feed rate, depth of cut, and workpiece temperature on a conventional lathe. The effect of cutting speed, feed rate, depth of cut, and workpiece temperature on surface roughness, tool life, and metal removal rate have been optimized by conducting multi-response analysis. From the grey analysis, a grey relational grade is obtained and based on this value an optimum level of cutting parameters has been identified. Furthermore, using analysis of variance method, significant contributions of process parameters have been determined. Experimental results reveal that feed rate and cutting speed are the dominant variables on multiple performance analysis and can be further improved by the hot turning process.  相似文献   

18.
Optimization techniques using evolutionary algorithm (EA) are becoming more popular in engineering design and manufacturing activities because of the availability and affordability of high-speed computers. In this work, an attempt was made to solve multi-objective optimization problem in turning by using multi-objective differential evolution (MODE) algorithm and non-dominated sorting genetic algorithm(NSGA-II). Optimization in turning means determination of the optimal set of machining parameters to satisfy the objectives within the operational constraints. These objectives may be minimum tool wear, maximum metal removal rate or any weighted combination of both. The main machining parameters which are considered as variables of the optimization are cutting speed, feed rate, and depth of cut. The optimum set of these three input parameters is determined for a particular job-tool combination of EN24 steel and tungsten carbide during a single-pass turning which minimizes the tool wear and maximizes the metal removal rate after satisfying the constraints of temperature and surface roughness. The regression models, developed for tool wear, temperature, and surface roughness were used for the problem formulation. The non-dominated solution set obtained from MODE was compared with NSGA-II using the performance metrics and reported  相似文献   

19.
基于遗传算法的铣削参数优化   总被引:7,自引:1,他引:6  
研究了在加工中心环境下 ,铣削加工切削参数的优化选择问题。通过考虑机床和工件的实际约束 ,建立了以最大生产率为目标的切削参数数学模型。应用遗传算法 ,及所建模型对铣削参数进行了寻优并进行了实例验证。  相似文献   

20.
通过对建立的多工序多工步制造系统生产时间和生产成本的数学模型的优化分析,并考虑了相应的生产条件约束限制,从而提出了基于最大生产率多工序多工步有约束制造模型切削用量优化求解思想——主目标生产效率最大,次目标生产费用最小,并给出了有效的优化算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号