首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
通过确定实际履带车辆的简化条件,建立了二自由度车辆悬挂系统模型,得出了车身加速度、悬挂动行程、负重轮相对动载荷对路面输入的幅频特性,分析了悬挂刚度、阻尼系数、负重轮胶圈刚度和非悬置质量等参数变化对悬挂传递特性的影响.结果表明,在进行车辆悬挂系统设计和振动控制时,必须考虑悬挂系统参数的匹配问题和参数变化对振动控制的影响.  相似文献   

2.
随着铁道车辆运行速度的提高,复杂的车下设备对车体的振动影响不能忽视.将车体考虑成等截面欧拉梁,建立了车辆刚柔耦合的垂向动力学简化模型,考虑了设备弹性悬挂和刚性悬挂两种连接方式对车体振动的影响.结果显示,弹性悬挂能够有效抑制设备高频振动能量的传递,降低车体的弹性振动.为了讨论车下设备弹性悬挂参数与车体结构振动的匹配关系,详细地分析了不同悬挂刚度和阻尼对车体振动的影响.当刚度设置在合适的范围时,由于车下设备与车体间同向和反向运动,使车下设备的传递率下降,车体的振动降低.同时,提高悬挂阻尼也在一定程度上能够抑制车体的振动.  相似文献   

3.
基于动力吸振原理的动车组车下设备悬挂参数设计   总被引:3,自引:2,他引:3  
为降低车体的弹性振动,将车体考虑成弹性欧拉梁,基于动力吸振原理进行多个车下设备的最优悬挂频率设计。建立弹性车体和车下设备的垂向耦合振动数学模型,研究不同设备悬挂频率、联接阻尼、质量和安装位置条件下的车体振动分布规律。建立车辆系统三维刚柔耦合动力学模型,仿真分析在实际线路激扰条件下,车体振动和平稳性随设备悬挂参数变化的分布规律。垂向耦合振动理论分析表明动力吸振原理可用于车下设备悬挂参数设计,验证了用于车体弹性振动减振的可行性和有效性,能够显著降低车体的垂弯模态振动;将大质量设备越靠近车体中部安装时车体的减振效果越好;设备悬挂频率应接近车体的垂弯模态频率,较优的弹性联接阻尼比应满足0.05~0.20。三维刚柔耦合动力学仿真结果验证了理论分析结果,车辆运行速度越高,减振效果越显著。试验台结果表明车下设备采用弹性联接可显著改善高速动车组的乘坐平稳性,与理论和仿真分析结果吻合。  相似文献   

4.
为研究车下设备对动车组舒适度的影响,建立考虑车体弹性和多个车下设备的高速动车组垂向动力学模型,实现设备的质量参数、结构参数和悬挂参数等参数化建模,基于频域分析法推导系统加速度频响函数表达式,采用随机轨道不平顺激励功率谱和舒适度滤波函数计算舒适度指标,基于最优同调理论设计设备的最优悬挂频率和阻尼比并进行数值验证。结果表明,车体垂弯频率越高、设备质量越大且越靠近车体中心安装,舒适度指标越小,车辆乘坐舒适性越好,建议将大质量设备(4 t及以上)悬挂在距车体中心5 m以内;设备质心纵向偏心导致其吊挂点的作用力力臂改变和转动惯量增加,造成舒适度指标略有增加;在优化设备悬挂参数时,可以忽略车体结构阻尼的影响;设备质量越大,最优悬挂频率越低、最优悬挂阻尼比越大,且应当基于加速度响应设计最优悬挂阻尼比,最优同调条件为车体和设备的相位差接近π/2;针对所述车辆,设备最优悬挂频率和阻尼比分别为7 Hz和0.2~0.3,车体加速度功率谱中的弹性振动主频得到充分抑制。  相似文献   

5.
高速铁道客车车体受轨道激扰力的作用产生弹性振动,影响客车运行平稳性。为了分析车体弹性振动与车体悬挂参数关系,基于刚柔耦合动力学原理,建立了客车垂向动力学模型,根据共振理论及模态叠加原理计算了系统固有频率和响应功率谱,分析了车辆系统悬挂参数和运行参数对振动的影响。仿真发现弹性车体振动响应大于刚性车体,车体一阶垂弯振动对弹性振动的贡献最大。在满足结构条件下,适当降低一、二系悬挂垂向阻尼、一系悬挂垂向刚度可减小车体弹性共振,系统各个部件自振频率控制、车体垂向悬挂阻尼控制可实现整车模态及局部有害模态控制。  相似文献   

6.
城轨列车的车载设备在工作时会影响车辆运行的平稳性,采用弹性悬挂并设置合理的悬挂参数是提升列车运行平稳性的有效方式.基于刚度经验公式,计算出城轨列车车载设备弹性悬挂的初始悬挂刚度,然后利用多目标优化软件Isight强大的数据分析、优化能力,结合多体动力学软件UM,以车体的振动控制为目的 ,对变压器和前、后空调的各项悬挂参数进行优化,得到车载设备最佳悬挂参数,根据最佳悬挂参数设计出符合要求的车载设备悬挂装置结构.通过对比优化前、后的各振动指标可以发现:横向和垂向的振动加速度均方根指标整体优化较为明显,最大优化率达到了23.25%;而平稳性指标方面均有不同程度的优化,但整体优化幅度小于横向和垂向振动加速度均方根指标,最大优化率为11.38%.  相似文献   

7.
采用双级隔振系统分析了车下有源设备对车体振动的影响,推导出车下有源设备与弹性车体耦合振动数学模型,得到车体和有源设备运动特性表达式。通过数值计算及考虑车体弹性的刚柔耦合动力学仿真计算,表明了有源设备对车体局部振动影响明显;设备转动不均衡量的增大会导致局部振动范围的进一步扩大;当采用不同隔振方式时,双级隔振系统可以更有效地降低车体弹性振动。通过对隔振系统悬挂参数研究发现,框架与设备质量比主要影响设备自身振动,对车体减振作用较小;合理的悬挂刚度和阻尼比能有效降低设备与车体之间的耦合作用,并且悬挂刚度对系统隔振性能影响更明显。  相似文献   

8.
周园园  陈安军 《机械设计》2019,36(12):39-46
以考虑易损件的2自由度悬挂系统为对象,建立矩形波冲击下系统无量纲非线性动力学方程,易损件加速度响应求解选择4阶Runge-Kutta数值方法,以易损件加速度响应峰值与脉冲幅值比值衡量易损件冲击特性,脉冲时间、系统悬挂角或系统频率比等为变量,构建易损件的三维冲击谱,讨论冲击谱在系统频率比、悬挂角等参数影响下的变化规律。算例分析表明,系统响应对频率比参数敏感,较低频率比时易损件加速度响应峰值较大且出现波动,且当频率比在1的附近波动加剧时,增加频率比可有效地抑制易损件加速度响应峰值;较大频率比条件下,减小系统悬挂角可使系统获得较好的缓冲效果;系统响应对阻尼比较为敏感,当频率比、质量比、悬挂角等参数一定时,系统存在最佳阻尼比,系统设计满足合适阻尼比可有效抑制易损件加速度响应峰值。研究结果可为考虑易损件的悬挂系统设计提供理论依据。  相似文献   

9.
研究考虑易损件的悬挂式弹簧系统振动特性。系统简化为2自由度模型,推得无量纲非线性动力学方程,采用四阶龙格-库塔法数值分析易损件振动响应特性。以易损件加速度、位移为响应指标,无量纲时间为变量,讨论了系统悬挂角、频率比和质量比等对易损件加速度、位移响应的影响规律。研究表明:系统悬挂角、质量比等对易损件振动响应幅值影响显著;减小悬挂角,在低频率比区域增大质量比可抑制易损件加速度和位移响应幅值。研究结论可为悬挂式弹簧系统的设计提供理论基础。  相似文献   

10.
为了分析车下设备弹性悬挂参数对高速客车平稳性的影响,通过对CRH3型高速动车组的车体有限元模型进行模态计算,并利用多体动力学软件SIMPACK建立高速动车组单车刚柔耦合系统动力学模型,研究车下设备悬挂参数对车体振动的影响规律。通过对比分析刚性与弹性两种不同的车下设备联接方式,结果表明弹性联接方式能够对车体的弯曲振动起到一定的抑制作用,能够降低车下设备对车体振动的影响。当车下设备的垂向悬挂频率介于8~12Hz之间时,车体中部的垂向平稳性指标值最小,而车下设备垂向悬挂频率的改变对车体前端和后端的平稳性指标影响不大。这表明当车下设备的垂向悬挂频率接近车体的垂向弯曲频率时,只能在一定程度上降低车体中部的垂向振动。同样,车下设备横向悬挂刚度的改变对车体前端和后端的平稳性指标影响也不大,主要影响车体中部的横向平稳性指标,最终优化的车下设备横向悬挂刚度要大于1.2倍的垂向悬挂刚度。车下设备质量越重、离车体中部越近,车体中部的平稳性指标值越小即车辆的平稳性越好。  相似文献   

11.
为研究悬挂多设备对高速列车舒适度指标影响规律,建立车体-设备的27自由度的刚柔耦合数学模型,获得车体及车下设备悬挂系统的加速度频率响应函数表达式,结合德国垂向不平顺轨道谱和舒适度滤波函数计算车体参考点的舒适度指标。分别研究有无设备、不同悬挂频率、不同悬挂位置对车辆垂向舒适度指标的影响规律。研究结果表明:合理设计车下设备悬挂参数不仅能降低车体中部舒适度指标,还能在一定程度改善车体端部乘坐舒适性,尤其是200~300 km/h时车体端部舒适度指标;通过分析最终确定设备1最优悬挂频率为10.2 Hz;双层悬挂系统中框架最优悬挂频率小于8 Hz,设备2最优悬挂频率为11~12 Hz;设备的空间布置也会对舒适度产生影响,设备1悬挂位置对车体中部和端部舒适度影响不大,而双层悬挂系统悬挂于13.5 m位置处时车体中部和端部都能获得较好舒适性。  相似文献   

12.
轨道车辆车下设备一般通过弹性悬挂安装在车体边梁或者底板安装座上,在车辆行驶过程中,其悬挂参数会对车体地板的振动产生一定的影响。建立了考虑车体柔性与车下设备的车辆系统刚柔耦合动力学模型,对车辆行驶过程中车下设备悬挂参数对车体振动响应的影响进行了计算分析。结果表明,车下设备悬挂参数一定程度上影响车体的振动,进而提出了一种轨道车辆车下设备悬挂智能吸振设计的设想。  相似文献   

13.
弹性联轴器对车辆动力传动系统扭振特性影响研究   总被引:6,自引:0,他引:6  
车辆动力传动系统属于多自由度扭转振动系统,其轴系的扭转振动是影响其系统安全的重要因素之一。文中通过建立某车辆动力传动系统的多自由度质量-弹性-阻尼动力学模型,根据振动理论并依托系统扭振实验研究了3种弹性联轴器对该系统扭振特性的影响规律,着重分析联轴器刚度和阻尼对系统固有频率、固有振型、强迫振动响应等模态参数的影响。通过对比研究获得如下结论.匹配的弹性联轴器可以调整系统的低阶固有频率、避免系统发生共振、衰减共振振幅和发动机输出力矩的幅值不均匀性,即改善动力传动系统的扭振特性。  相似文献   

14.
单自由度车辆悬挂系统非线性振动特性研究   总被引:1,自引:0,他引:1  
对非线性弹簧与阻尼共同作用下的单自由度车辆悬挂系统进行振动特性研究.在研究中,建立单自由度非线性系统动力学模型,利用Melnikov方法分析悬挂系统发生混沌的临界条件,求出悬挂系统发生斯梅尔马蹄意义下混沌时的轨道激励幅值阈值,同时分析非线性刚度、悬挂阻尼等参数对悬挂系统混沌区域的影响.在进行单自由度车辆悬挂系统参数设计...  相似文献   

15.
基于隔振原理,首先给出了系统频率避免共振需要满足的条件;其次,以E3C动车组牵引变压器冷却单元风机组为研究对象,建立了详细的有限元模型,通过对其进行模态分析得到变压器组装的刚体振动频率和冷却单元吊梁的弹性振动频率;然后,按照变压器组装的垂向浮沉振动、风机组的自身工作振动、冷却单元吊梁的垂向弹性振动对组合模型振动的影响依次降低的原则,研究了风机组避免与三种激励发生共振所需的悬挂频率与刚度;最后,通过避开三种激励的主共振区得到最优的风机组悬挂频率和风机组安装座减振橡胶刚度。  相似文献   

16.
为了提升车辆悬挂系统的动力学性能,在传统弹簧-阻尼悬挂模式基础上添加惯容,建立了惯容-弹簧-阻尼三元件并联的悬挂系统,在多组悬架参数下进行数值仿真,分析在新悬挂方式下悬架参数对悬架垂向振动响应的影响,采用多目标遗传算法进行参数优化,针对车身垂向加速度与悬架动行程,对悬架参数进行2组多目标优化,得出惯容、弹簧和阻尼最优参数匹配。仿真结果证明:在传统弹簧-阻尼悬挂模式基础上添加惯容可以有效改善车辆垂向振动系统的减振性能,减小主频。经过2组优化后,与传统弹簧-阻尼悬挂模式相比,车身垂向加速度均方根值分别减小了63.15%、62.22%;悬架动行程均方根值均减小了25.00%;轮胎动载荷均方根值分别减小了73.23%、72.65%。  相似文献   

17.
基于Simiu风谱的功率谱密度函数,建立自相关模型(AR模型),模拟随高速列车移动的点的随机脉动风速时程,分析得到随机风作用在高速列车车体上的气动激扰。建立考虑车体弹性振动和多个车下悬吊设备的刚柔耦合动力学模型,分析不同环境风速下气动激扰对车体和悬吊设备振动行为的影响。研究表明,气动激扰对车体和悬吊设备的横向和垂向振动特性明显,随着风速的增大,车体和设备振动加剧,但是对于车体横向振动来说,车辆运行速度低于150 km/h,各风速下的差异不明显;合理选取车下悬吊系统的悬挂参数可以有效地降低车体和设备的振动,当环境平均风速5 m/s时,车体横向采用8 Hz的悬挂频率比1 Hz的降低约26.5%的振动;考虑气动激扰的车下悬吊系统振动行为研究可以更加真实地反映车体和悬吊设备的耦合振动关系,为设计更优异性能的车下悬吊系统提供参考价值。  相似文献   

18.
基于国内某型高速动车组车下旋转设备的振动测试试验,建立考虑车体弹性和车下旋转设备不均衡振动的刚柔耦合动力学模型,分析车下旋转设备两级悬挂方式对车体和旋转设备振动行为的影响。通过车体有限元完整模型、子结构模型和模态试验的分析结果,确保动力学模型中的弹性车体可以反映车体实际的振动模态。研究结果表明,两级悬挂方式主要降低车体受到的不均衡振动,对其他频率下的振动影响较小,与单级悬挂相比较,其振动幅值降低了约一半,减振效果明显;两级悬挂系统中的框架质量、悬挂频率和阻尼比对车体和旋转设备的振动影响明显,通过选取合理的悬挂参数使得车体减振效果更明显;与单级悬挂比较,两级悬挂结构复杂,不适用于所有的车下旋转设备,为确保某些重要电器元件满足长期服役运营的需求,对其冷却风机等旋转设备采用两级悬挂方式可以获取良好的减振效果。  相似文献   

19.
针对国内机车柴油机双层隔振设计参数问题,采用理论分析的方法分别推导了柴油机、中间质量的振幅与质量比、频率比和阻尼比之间的函数关系式,并构建了柴油机、中间质量的振幅频率响应曲面,研究了双层隔振系统参数变化对系统振动特性的影响规律。结果表明:中间质量与柴油机的质量比为0.6,可满足系统隔振、设备总质量和成本的要求;可通过柴油机和中间质量的振幅频率响应曲面选择一级隔振器刚度、二级隔振器刚度范围,为双层隔振系统隔振器刚度优化提供基础数据和理论依据。  相似文献   

20.
在履带式车辆中安装粘弹性悬挂,可有效缓冲行走机构的振动冲击。针对橡胶材料所具有的粘弹性特性.研究了粘弹性悬挂的设计参数的确定方法,并把结果应用于某大型履带式推土机粘弹性悬挂的设计中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号