首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Low weight and good toughness thin plate parts are widely used in modern industry, but its flexibility seriously impacts the machinability. Plenty of studies focus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surface errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling forces calculated by the micro-unit cutting force model are loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed method not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.  相似文献   

2.
The study of fixture related errors is playing an increasingly important role in the improvement of machined part quality. In this work, the locator variability of machining fixtures is analyzed following an uncertainty approach, allowing us to estimate the effect of fixture related geometrical errors on key product characteristics of machined workpieces. Monte Carlo simulation was implemented to generate sufficient variability to determine the expected value of the measuring points of the machined workpiece surface and its related key product characteristic. The results from the Monte Carlo simulation allow sufficient range of values to construct a mathematical relationship between fixture related errors and machined workpiece key product characteristics. Furthermore, the Taguchi loss function is used to investigate the loss cost incurred by a given fixturing uncertainty scheme. An example problem of a prismatic workpiece is presented, where the locating error due to the fixturing system is evaluated in order to know its influence on the workpiece flatness and its associated uncertainty.  相似文献   

3.
针对主减速器壳体在立式多刀半自动车床上加工时,采用标准液压三爪卡盘无法有效定位夹紧工件的问题,依据工件的结构特点,设计制造一种能在一次装夹下完成粗精两序加工的专用车削工装夹具,彻底解决了由于多刀同时粗加工、车削抗力大,工件夹持不可靠的安全问题。通过夹紧力的高低压转换,有效防止工件夹紧变形。生产实践证明,该夹具简单可靠,便于操作,提高了生产效率,保证了加工精度。  相似文献   

4.
5.
Workpiece motion arising from localised elastic deformation at fixture-workpiece contacts owing to clamping and machining forces is known to affect significantly the workpiece location accuracy and, hence, the final part quality. This effect can be minimised through fixture design optimisation. The clamping force is a critical design variable that can be optimised to reduce the workpiece motion. This paper presents a new method for determining the optimun clamping forces for a multiple clamp fixture subjected to quasu-static machining forces. The method uses elastic contact mechanics models to represent the fixture-workpiece contact and involves the formulation and solution of a multi-objective constrained oprimisation model. The impact of clamping force optimisation on workpiece location accuracy is analysed through examples involving a 3-2-1 type milling fixture.  相似文献   

6.
Optimal Fixture Design Accounting for the Effect of Workpiece Dynamics   总被引:3,自引:6,他引:3  
This paper presents a fixture layout and clamping force optimal synthesis approach that accounts for workpiece dynamics during machining. The dynamic model is based on the Newton– Euler equations of motion, with each fixture–workpiece contact modelled as an elastic half-space subjected to distributed nor-mal and tangential loads. The fixture design objective in this paper is to minimise the maximum positional error at the machining point during machining. An iterative fixture layout and clamping force optimisation algorithm that yields the "best" improvement in the objective function value is presented. Simulation results show that the proposed optimis-ation approach produces significant improvement in the work-piece location accuracy. Additionally, the method is found to be insensitive to the initial fixture layout and clamping forces.  相似文献   

7.
Machining fixtures are used to locate and constrain a workpiece during a machining operation. To ensure that the workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped. Minimising workpiece and fixture tooling deflections due to clamping and cutting forces in machining is critical to machining accuracy. An ideal fixture design maximises locating accuracy and workpiece stability, while minimising displacements.The purpose of this research is to develop a method for modelling workpiece boundary conditions and applied loads during a machining process, analyse modular fixture tool contact area deformation and optimise support locations, using finite element analysis (FEA). The workpiece boundary conditions are defined by locators and clamps. The locators are placed in a 3-2-1 fixture configuration, constraining all degrees of freedom of the workpiece and are modelled using linear spring-gap elements. The clamps are modelled as point loads. The workpiece is loaded to model cutting forces during drilling and milling machining operations. Fixture design integrity is verified. ANSYS parametric design language code is used to develop an algorithm to automatically optimise fixture support and clamp locations, and clamping forces, to minimise workpiece deformation, subsequently increasing machining accuracy. By implementing FEA in a computer-aided-fixture-design environment, unnecessary and uneconomical “trial and error” experimentation on the shop floor is eliminated.  相似文献   

8.
In high-speed dry milling of thin-walled parts, the cutter-workpiece temperature rises asymptotically with cutting speed, causing excessive cutter tooth wear and workpiece thermal expansion, which in turn reduces the cutter life and produces dimensional and geometrical variabilities in the machined part. Therefore, a basic understanding of the thermal aspect of machining and the effecting parameters is essential for achieving better part quality with improved productivity. This paper presents a transient milling simulation model to assist manufacturing engineers in gaining in-depth understanding of the thermomechanical aspects of machining and their influence on resulted part quality. Based on the finite-element method approach, the model can predict transient temperature distributions and resulted elastic-plastic deformations induced during the milling of 2.5D prismatic parts comprising features like slots, steps, pockets, etc. The advantages of the proposed model over previous works are that it (1) performs feature-based machining simulation considering transient thermomechanical loading conditions; (2) allows modeling the effects of coolant on convective heat transfer rate; and (3) considers the nonlinear behavior of the workpiece due to its changing geometry, inelastic material properties, and flexible fixture–workpiece contacts. The prediction accuracy of the model was validated with experimental results obtained during the course of the research work. A good agreement between the numerical and experimental results was found for different test cases with varying part geometries and machining conditions.  相似文献   

9.
In any machining fixture, the workpiece elastic deformation caused during machining influences the dimensional and form errors of the workpiece. Placing each locator and clamp in an optimal place can minimize the elastic deformation of the workpiece, which in turn minimizes the dimensional and form errors of the workpiece. Design of fixture configuration (layout) is a procedure to establish the workpiece–fixture contact through optimal positioning of clamping and locating elements. In this paper, an ant colony algorithm (ACA) based discrete and continuous optimization methods are applied for optimizing the machining fixture layout so that the workpiece elastic deformation is minimized. The finite element method (FEM) is used for determining the dynamic response of the workpiece caused due to machining and clamping forces. The dynamic response of the workpiece is simulated for all ACA runs. This paper proves that the ACA-based continuous fixture layout optimization method exhibits the better results than that of ACA-based discrete fixture layout optimization method.  相似文献   

10.
根据变速箱拨叉轴上圆弧槽相对位置准确、系列拨叉轴可以在一套夹具上装夹、多个零件同时加工的加工要求,设计了一种分体式气动铣床夹具。夹具采用定位块限位拨叉轴端面、燕尾面支承拨叉轴外圆的定位方式,工件外圆多点气动夹紧。通过两级增力机构,增大夹紧力。柔性传动力矩,消除了交变铣削力作用下产生的振动。依据切削力的计算选择了气缸规格。本设计实现了工件在夹具中成组布置,提高了生产效率,保证了加工质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号