首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对超声振动辅助磨削加工中BK7光学玻璃材料表面及亚表面的微裂纹扩展过程中的交互作用进行研究,使用维氏金刚石压头进行了BK7光学玻璃二次印压实验来模拟超声振动作用影响下单颗磨粒对光学玻璃的反复印压作用,同时采用界面粘结法获得了不同印压载荷及印压距离下产生的压痕及微裂纹形态特征及分布情况。实验结果表明:在相同载荷加载情况下,第二次印压产生的亚表面中位裂纹扩展最大深度受到侧向裂纹影响减小了30μm,同时侧向裂纹闭合后在光学玻璃材料表面及内部产生破碎。基于压痕断裂力学理论,分析了准静态载荷作用下光学玻璃内部应力场的分布及应力场驱动下微裂纹的扩展机制,对超声振动效应影响下微裂纹扩展的交互作用进行研究。结果表明:磨削过程中使用轴向超声振动辅助,能够有效地降低光学玻璃材料亚表面裂纹的深度,改善亚表面及表面加工质量,同时促进了工件材料的去除。  相似文献   

2.
进行光学玻璃BK7超声振动辅助磨削试验,采用截面抛光法配合HF酸腐蚀法并通过扫描电子显微镜观测获得亚表面裂纹的最大深度,研究了主轴转速、磨削深度、进给速度和超声振动振幅对亚表面损伤裂纹最大深度的影响规律,分析了亚表面裂纹的几种形态及其成因。结果表明,随着主轴转速和超声振动振幅增大,磨削深度及进给速度减小,亚表面最大裂纹深度明显减小。超声振动的引入改善了磨削时的加工条件,对提高加工表面及亚表面的质量有一定帮助。  相似文献   

3.
为了进一步揭示超声振动辅助磨削加工机理,建立了超声振动辅助磨削亚表面损伤深度与断裂韧性的预测模型,设计几何形状随机的单颗磨粒超声振动压痕实验和超声振动辅助磨削实验,调查两种情况下K9光学玻璃压痕变形区域形貌特征,提出一种适用于超声振动和非超声振动两种加载条件的等效断裂韧性计算方法,并通过超声振动辅助磨削实验来验证预测模型的可靠性。实验结果表明,超声振动可以有效增加K9光学玻璃抵抗断裂的能力,降低亚表面损伤程度,且预测模型与实验结果具有良好的一致性。  相似文献   

4.
光学玻璃塑性域切削试验研究   总被引:1,自引:0,他引:1  
对光学玻璃材料BK7进行压痕试验及超声振动变切深刻划试验.通过对BK7表面垂直加载不同的载荷,观察分析不同的载荷下材料表面的变形形式得到了材料分别发生塑性变形,脆塑转变,脆性破坏时的垂直载荷的范围和切削深度的范围.利用超声振动系统对试件进行变切深刻划试验,得到了材料由塑性切削到脆性破坏的连续变化过程的表面形貌.实验结果表明超声振动切削有效提高了临界切削深度.  相似文献   

5.
采用普通磨削方式和超声振动辅助磨削方式对无压烧结SiC材料进行了磨削工艺实验,对不同磨削方式下磨削参数对磨削力比、表面损伤及亚表面损伤的影响进行了对比研究,并分析了超声振动磨削作用机制。实验结果显示,该实验中SiC材料去除主要以脆性去除为主,砂轮磨削力比随着磨削深度和进给速度的增加缓慢增加,随着主轴转速的增加略有减小;普通磨削时SiC工件亚表面损伤深度随着磨削深度、进给速度增加逐渐增加,而超声振动辅助磨削变化较小。与普通磨削相比,在相同的磨削参数下,超声振动辅助磨削的高频冲击使材料破碎断裂情况得到改善,且磨削力比减小近1/3,表面裂纹、SiC晶粒脱落、剥落等表面损伤较少,表面损伤层较浅,亚表面裂纹数量及深度都有较大程度降低,可以获得较为理想的表面质量。  相似文献   

6.
为研究超声振动作用对先进陶瓷磨削材料去除机理的影响,文章在超声振动方向垂直于磨削表面条件下,采用钎焊磨头对氧化锆陶瓷开展了超声辅助磨削(ultrasonic assisted grinding,UAG)试验。基于磨削表面微观形貌、磨削力和磨削比能分析,对变磨削深度条件下普通磨削(conventional grinding,CG)与超声辅助磨削的材料去除机理进行了对比。结果表明:当磨削深度低于10μm时,两种方法对应的表面材料去除机理均以塑性去除为主,且普通磨削表面伴有片层状破碎,而超声辅助磨削表面则存在尺寸细小的纹路状微破碎,同时磨削力与磨削比能也较低。当磨削深度超过10μm后,材料去除机理均转变为脆性断裂模式,且加工表面出现微裂纹,但相同条件下超声辅助磨削表面微裂纹尺寸较小。  相似文献   

7.
修树东  周明  李敏 《工具技术》2008,42(4):15-17
通过显微压痕和纳米压痕试验,研究了Soda-lime光学玻璃在微/纳米尺度下的材料去除机理,发现外加载荷的幅值对脆性材料变形方式有直接影响。对光学玻璃的金刚石普通切削和超声振动切削试验结果表明,超声振动切削的实际有效切削深度与名义切削深度有着较好的一致性,合理选择金刚石超声振动切削参数可实现光学玻璃的塑性域切削。  相似文献   

8.
为了在线预测硬脆材料磨削加工引起的亚表面损伤深度,本文利用概率统计法对磨粒高度进行分析,建立了刀具切削力与亚表层裂纹扩展深度之间的理论关系模型。首先,基于硬脆材料的压痕断裂力学理论,分析了中位裂纹扩展长度与磨粒压痕深度之间的内在关联。随后,对刀具端面边缘的磨粒数目进行了数理统计,建立了刀具切削力与单个磨粒切削深度之间的理论关系。在此基础上,提出了工件亚表层损伤深度的在线预测模型SSD~(max)=1.284×SSD■-36.23,并结合BK7玻璃的实际磨削实验验证了其正确性。通过对比实验结果与理论模型的预测结果发现,该方法可以在线、准确地预测磨削加工引起的工件亚表层损伤深度。  相似文献   

9.
以压痕断裂力学模型和硬脆材料去除机理为理论基础,对氧化锆陶瓷的表面损伤进行研究,结合砂轮特征及磨削力公式建立了普通磨削和超声振动磨削的横向裂纹和表面破碎率模型,并对实验所得材料表面进行图像处理。结果表明:横向裂纹和表面破碎率随着磨削深度增大而增大,与普通磨削相比,超声振动磨削降低了45%裂纹长度,降低了23%表面破碎率,具有更完整的表面形貌特征。  相似文献   

10.
针对用传统车削或研磨抛光方法加工大尺寸非球面热压硫化锌透镜存在的不足,采用金刚石砂轮磨削加工方法对热压硫化锌材料进行了加工实验。通过压痕、单颗粒金刚石刻划和磨削正交实验,研究了该方法在磨削加工过程中的塑性域去除机理及其亚表面损伤情况,并优化了超精密磨削加工工艺参数。压痕实验发现热压硫化锌材料在载荷作用下易于出现径向裂纹和微裂纹,其断裂韧性为2.643842MPa/m1/2,临界切削深度为1.808μm。单颗粒金刚石刻划实验结果表明,热压硫化锌材料在较小的切削深度下可以实现塑性域去除,但在机械去除过程中易出现多种形式的亚表层损伤。磨削实验结果表明,磨削深度是影响表面光洁度的主要因素,随着磨削深度的增大表面光洁度降低,最佳表面粗糙度为7.6nm。工作台进给速度是影响面形精度的主要因素,且平面磨削的面形精度PV值为0.185~0.395μm。研究结果表明,磨削加工热压硫化锌材料可以获得纳米级表面粗糙度。  相似文献   

11.
超声辅助磨削是一种套料芯棒加工方法,而硬脆材料在超声辅助磨削加工过程中的去除模式主要为脆性断裂,这将导致加工出的芯棒直径与砂轮内径之间存在尺寸误差。针对上述问题,通过分析超声辅助磨削加工中砂轮表面金刚石磨粒的运动轨迹,运用压痕断裂力学理论建立了超声辅助磨削芯棒的直径预测模型。该模型考虑了脆性材料断裂时产生的侧位裂纹扩展对芯棒直径的影响。通过对K9光学玻璃材料进行超声辅助套料试验对模型进行了标定和验证,接着研究了进给速度和转速对芯棒直径误差的影响规律。通过对比研究发现,模型计算结果与试验结果吻合较好,误差小于5%,验证了模型的有效性。试验结果表明,采用适当的低转速和大进给速度可以有效降低超声辅助磨削芯棒直径的尺寸误差。本文所建模型可为超声辅助磨削套料芯棒的砂轮选择提供理论指导。  相似文献   

12.
主要介绍使用声发射信号技术对压痕实验过程进行监测。在实验过程中,对每个不同压力载荷情况下进行声发射信号的采集,建立声发射有效监测压痕试件状态的机制从而配合压痕实验来提高实验精度和稳定性,最终得到在所施加载荷状态下的各种光学玻璃试件的特征尺寸值及压痕形貌显微照片,确定侧向裂纹和中介裂纹的形核、发展过程,从而为提高光学玻璃的加工质量和表面精度做出理论铺垫。  相似文献   

13.
针对光学玻璃加工中存在效率低、存在表面微裂纹等问题,采用超声辅助铣削工艺,基于超声振动高频冲击效应,研究切削参数及声学参数对铣削力的影响,建立了光学玻璃超声振动铣削的铣削力模型。通过对比实验研究,对超声振动铣削和常规铣削光学玻璃,讨论了铣削速度、每齿进给量、铣削深度等因素对铣削力的影响。实验结果表明,在超声铣削情况下,铣削力与常规铣削力相比大幅度降低。  相似文献   

14.
石英玻璃等光学硬脆材料在加工过程中不可避免地产生亚表面微裂纹,从而对光学元件的使役性能具有显著影响。因此,石英玻璃亚表面微裂纹的无损检测对于优化石英玻璃加工工艺进而提高加工质量具有十分重要的意义。提出了基于偏振激光散射(Polarized Laser Scattering, PLS)的石英玻璃亚表面微裂纹检测方法,搭建了PLS无损检测系统。通过压痕实验以20 mN,50 mN,100 mN压力制备亚表面微裂纹深度为5.27μm,9.7μm,15.42μm的压痕试样,使用PLS检测系统对压痕试样进行无损检测,探究PLS信号与亚表面微裂纹深度的对应关系。通过不同粒径磨粒(1~20μm)研磨制备亚表面微裂纹深度为1~10μm的研磨试样,发现研磨PLS检测信号与亚表面裂纹深度之间呈幂函数关系。搭建的PLS检测系统可以对深度小于10μm的石英玻璃亚表面微裂纹进行有效检测与量化。PLS检测系统检测结果可实现研磨石英玻璃微裂纹检测,进而为亚表面微裂纹控制及加工工艺优化提供指导。  相似文献   

15.
为了实现石英玻璃的高效低损伤超精密磨削加工,研究不同粒度金刚石砂轮磨削石英玻璃的表面和亚表面质量,建立表面粗糙度与亚表面损伤深度之间的关系模型。通过石英玻璃磨削试验研究400#、1 500#、2 000#和5 000#金刚石砂轮磨削石英玻璃的表面微观形貌、表面粗糙度及其亚表面损伤深度,分析相应的材料去除方式;基于压痕断裂力学理论分析脆性域磨削石英玻璃时工件表面微观形貌和亚表面微裂纹的形成机理,建立表面粗糙度PV值和亚表面损伤深度SSD之间的定量关系。研究结果表明:随着砂轮粒度的减小,石英玻璃磨削表面的凹坑、微裂纹、深划痕等缺陷逐渐减少,表面粗糙度Ra和PV以及亚表面损伤深度SSD均随之明显减小,从400#砂轮磨削表面的R_a 274.0 nm、PV 5.35μm和SSD 5.73μm降低至5 000#砂轮磨削表面的Ra 1.4 nm、PV 0.02μm和SSD 0.004μm。500#和1 500#砂轮磨削表面的材料去除方式为脆性断裂去除,2 000#砂轮磨削表面的材料去除方式同时包括脆性断裂去除和塑性流动去除,但以塑性流动去除为主,5 000#砂轮磨削表面的材料去除方式为塑性流动去除;脆性域磨削石英玻璃的表面粗糙度PV与亚表面损伤深度SSD之间满足SSD=(0.627~1.356) PV~(4/3)的数学关系。  相似文献   

16.
金刚石线锯横向超声振动切割SiC单晶表面 粗糙度预测*   总被引:2,自引:0,他引:2  
把横向超声振动应用到金刚石线锯切割硬脆材料加工中,基于冲量原理分析了线锯横截面上不同位置处金刚石磨粒对工件的法向锯切力。应用压痕断裂力学理论,定量分析了在法向和切向载荷共同作用下磨粒下方中位/横向裂纹扩展的长度和深度。研究了振动磨粒在工件上间歇加载和卸载使横向裂纹优先扩展并抑制中位裂纹扩展的屏蔽效应。建立了横向振动线锯切割硬脆材料时线锯横截面不同位置处磨粒的材料去除模式模型,得到了横向振动线锯切割硬脆材料晶片表面粗糙度的预测公式。以SiC单晶为切割对象,进行普通线锯和横向超声振动线锯切割对比试验,测定线锯的锯切力和晶片表面粗糙度,并对表面形貌进行观察。结果表明,横向超声振动线锯切割SiC是以脆性去除为主塑性去除为辅的混合材料去除模式;同等试验条件下,超声振动线锯切割能使晶片表面粗糙度降低25.7%。表面粗糙度测试结果与理论预测具有较好的一致性。  相似文献   

17.
李霞 《现代制造工程》2021,(6):57-62,68
工程陶瓷零件的亚表面损伤严重影响其可靠性和使用寿命,因此探究了磨削温度对氮化硅陶瓷表面裂纹扩展的影响。首先,通过K型热电偶测温技术获得磨削参数与磨削温度的关系;其次,通过陶瓷片磨削试验获得陶瓷内部亚表面裂纹扩展情况;最后,得出磨削温度对裂纹扩展的改善机制。试验结果表明,随着磨削速度、磨削深度的增加,磨削温度增大;随着进给速度的增加,磨削温度减小。纵向裂纹在陶瓷内部扩展时会产生与原纵向裂纹扩展方向相同或者相近的新纵向裂纹,新纵向裂纹的路径在残余热应力的作用下会改变方向,出现横向裂纹,当新横向裂纹与原横向裂纹扩展路径相交后,会引起陶瓷表面的断裂和剥落。当磨削温度由456℃增加到1 035℃时,裂纹扩展深度先由8.1μm减小到3.8μm后,再增大到19.2μm,在603~732℃时,裂纹扩展深度较小,为3.8~5.6μm。研究表明适当的磨削温度对陶瓷亚表面裂纹扩展有抑制作用。  相似文献   

18.
以探索不同光学玻璃在纳米压痕条件下的机械特性,分析塑性去除的能力为目的,为后续机械加工质量的改善提供技术支撑,采用纳米压痕测试技术,测得BK7玻璃、石英玻璃及微晶玻璃表面的载荷与压入深度变化关系。在最大加载力为10 mN、50 mN和100 mN时,对光学玻璃的机械特性进行研究,得出三种材料在法向载荷作用下的变形和断裂行为。结果表明光学玻璃的弹性回复量、最大压深和残余深度随最大加载力的加大而上升,但相对弹性回复率基本稳定。石英玻璃、微晶玻璃和BK7玻璃的硬度依次减小,而弹性模量值依次增加。当表征材料的弹塑性特性时,相对弹性回复率这个参量兼具很强的参考意义,可推测加工时塑性去除的能力。这将有助于机械加工时表面质量的分析,并为研究加工机理提供保障。  相似文献   

19.
构建了单颗磨粒划擦各向同性硬脆材料的弹性应力场解析模型,并以此为基础提出单颗磨粒划擦各向同性硬脆材料表面的裂纹失稳扩展临界函数,临界函数包含原始表面应变速率、磨削液等因素对裂纹扩展造成的影响。将石英玻璃作为研究对象,深入分析了表面微裂纹损伤的可控磨削机理。在进行石英玻璃的磨削试验中,材料的磨削机理随单颗磨粒磨削深度的增加而变化,依次是塑性域去除、低载半脆性域去除、全脆性域去除和高载半脆性域去除。在1 mm/min的工件进给速度下,可以对石英玻璃进行塑性域磨削,从而获得无裂纹损伤的光滑磨削表面,然而其磨削效率较低,在实际生产中不能发挥理想的作用。对石英玻璃开展全脆性域磨削时,材料去除率较高、加工表面表面质量好、微裂纹损伤深度较小,砂轮自锐性良好,是一种优良的精密磨削工艺。  相似文献   

20.
本文分析了纳米ZrO2陶瓷在普通和超声磨削状态下的裂纹扩展过程及延性去除机理;通过对不同磨削状态的磨削力及AFM和SEM对表面质量的观察,做了在普通和超声磨削状态下的对比试验,研究了临界延性磨削深度对磨削力及表面质量的影响关系;基于超声振动磨削过程及磨削力的分析,讨论了超声振动增加延性磨削深度的原因,最后通过AFM对延性域加工表面形貌的形成机理进行了观察。研究表明:超声加工能明显提高纳米ZrO2陶瓷的临界延性磨削深度,振动方向垂直于砂轮线速度方向时,其磨削效果要优于振动方向平行于砂轮速度方向的磨削效果。通过在延性域范围内磨削,超声加工能高效地获得纳米加工表面,超精密磨削表面是由不同幅值多种波形叠加的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号