首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
漏磁与涡流复合探伤时信号产生机理研究   总被引:6,自引:0,他引:6  
提出一种直流漏磁和涡流复合探伤方法,以期通过信息融合提高检测灵敏度,但试验中发现涡流探头检测到了钢管的内壁裂纹,而钢管的涡流检测规范也认为信号由涡流效应引起的。采用有限元法和磁源的测试试验分析磁导率和漏磁场对涡流检测信号的影响,结果表明,认为检测信号为涡流效应引起的观点是有误的。应用等效源法对扰动磁场进行分析,理论分析表明,裂纹处由涡流效应引起的扰动磁场相比漏磁效应引起的漏磁场要小得多,裂纹的漏磁场导致检测线圈产生感应电动势从而获得检测信号,而此时涡流效应引起的信号被淹没在漏磁信号中,钢管在磁饱和状态下的涡流检测信号是由裂纹的漏磁场引起的,饱和磁化下铁磁性构件的涡流检测结果要重新认识。  相似文献   

2.
交流漏磁检测法常采用U形磁轭探头,但由于正弦波励磁信号引起了涡流,缺陷区域的漏磁场和扰动涡流场共同作用使其检测机理易导致混淆。建立了直流漏磁检测有限元模型,提出了评判检测原理的信号准则。在此基础上,对U形磁轭探头进行了仿真和试验。结果表明,当探头的一次磁场方向、探头移动方向与裂纹走向平行时,裂纹中心处的磁感应强度的水平分量比无缺陷处小,该分量与信号频率和励磁强度无关。依据评判准则,U形磁轭探头检测纵向裂纹时其机理并非源于交流漏磁效应。  相似文献   

3.
针对铁磁性材料的脉冲涡流检测信号比较复杂的问题,建立脉冲涡流矩形传感器检测模型,提出了矩形探头中同时存在脉冲涡流与脉冲漏磁检测区域,并进行脉冲电磁检测的仿真分析,研究了缺陷和矩形探头轴线所呈角度的最佳检测位置。仿真和实验结果表明了矩形探头的脉冲涡流有效检测区域为探头正下方的边框区域,而脉冲漏磁有效检测区域为矩形线圈中心的正下方区域。脉冲涡流最佳检测点为矩形探头轴线与缺陷呈10°附近位置,而脉冲漏磁最佳检测点为矩形探头轴线与缺陷呈70°位置。  相似文献   

4.
管道是石油和天然气工业的重要组成部分,而轴向裂纹是管道安全运营的重要隐患。传统的漏磁检测技术(MFL)对管道中轴向裂纹的检测灵敏度不高,从而形成检测盲区。本文提出了一种利用复合激励的MFL检测新方法,可实现对轴向和周向缺陷的同步检测。首先,利用U型磁轭对管壁进行交直流复合磁化;直流磁化场直接作用于周向裂纹并形成有效的MFL检测信号,而交流磁化场则在管壁内形成垂直于磁化方向的均匀涡流场;当该涡流场受到轴向裂纹干扰时,将形成二次感生磁场的扰动,因此,新方法通过对管壁表面的漏磁场及二次感生磁场检测,同时获得周向和轴向两个方向的探测能力;最后开展仿真和实验,并分析了新方法中作用于轴向和周向裂纹的磁化场、涡流场和二次感生磁场的分布。结果表明,新方法只需通过一次扫描,即可以获得缺陷的轴向和周向特征,实现了对裂纹的无盲点检测。  相似文献   

5.
高速漏磁检测饱和场建立过程及影响因素研究   总被引:1,自引:0,他引:1  
在高速漏磁检测过程中,随着检测速度增加,有效磁化时间减少,导致被测构件饱和场无法建立,影响磁化效果。采用方波激励模拟外磁场瞬变情况,建立瞬磁场作用下钢管内部磁场响应模型,对钢管内部饱和场建立过程及影响因素进行研究;分析高速漏磁检测时缺陷漏磁场特征,利用有限元方法计算磁场强度和钢管材质对磁化滞后时间及缺陷检测的影响;设计高速漏磁检测实验平台,对不同运行速度和不同外磁场强度下钢管缺陷进行实验研究。结果表明,外磁场瞬变时,钢管内壁中心磁场明显滞后于外磁场,钢管内部饱和场建立时间与磁场强度和材料电导率有关,提高外磁场强度,可快速建立饱和场,减弱磁化滞后时间和涡流效应影响,提升缺陷检测效果和漏磁检测速度,实验结果和理论分析具有很好的一致性。  相似文献   

6.
为了进一步提升脉冲涡流的缺陷检测能力,提出了脉冲涡流矩形差分探头的检测方法。建立了脉冲涡流矩形探头的三维检测模型,分析了矩形线圈激励时试件上感应电流的分布,比较了铁磁性材料和非铁磁性材料的试件表面涡流方向和值的大小。根据试件上涡流X分量和Y分量呈对称分布的特性,提出了两种金属材料的脉冲涡流矩形差分探头设计方法。制作了相应的脉冲涡流矩形差分探头来获取磁场分量,仿真与实验结果表明,对于铁磁性材料和非铁磁性材料缺陷检测,脉冲涡流矩形差分探头测量的磁场X分量、Y分量比Z分量检测灵敏度更高。  相似文献   

7.
以储罐底板漏磁检测方法为研究对象,提出采用直流电产生电磁场与永久磁铁产生的永磁场叠加,利用叠加后的磁场对储罐底板进行漏磁检测,开展复合励磁漏磁检测仿真分析研究。建立了复合励磁结构模型,得到了缺陷的漏磁场空间分布特征。  相似文献   

8.
基于三维场测量的脉冲漏磁检测技术   总被引:3,自引:2,他引:1  
漏磁检测广泛应用于铁磁性材料缺陷检测.脉冲漏磁检测技术是一种新型电磁无损检测技术.缺陷的定量评估是无损检测的重要步骤之一.运用有限元法对管道周向外壁缺陷的漏磁场进行瞬态分析,分析了缺陷脉冲漏磁场Bx、By和Bz三维分量的分布特点,最后给出了仿真结果和试验结果,试验结果和仿真有很好的一致性.试验结果表明:综合脉冲漏磁场的三维峰值扫描电压可以对缺陷的长度和宽度进行检测,而三维分量差分信号中的过零时间随缺陷的深度变化而变化,且不随缺陷宽度的改变而改变,由此可以检测缺陷的深度.三维脉冲漏磁检测系统使缺陷的定量检测有了可能.  相似文献   

9.
针对承压设备中铁磁性构件内外壁损伤检测问题,发展了一种低频漏磁检测技术。对低频漏磁信号进行分析处理,提取出的低频漏磁信号的幅值和相位信息,用于铁磁构件内外表面损伤检测与定量评价。通过数值仿真和检测实验,研究了裂纹深度和位置(上表面或下表面)的裂纹对漏磁场特征参数空间分布的影响。结果表明,漏磁信号的幅值特征参数和相位特征参数均可用于铁磁性构件上下表面一定深度范围内裂纹检测及定量表征,但两个参数对不同位置及深度范围内裂纹检测的敏感性不同。当裂纹位于试件上表面时,幅值特征参数对裂纹深度变化更敏感;而当裂纹位于试件下表面时,相位特征参数对裂纹深度变化的敏感性更高。本文研究工作为承压设备中铁磁性构件内外壁损伤检测做了有益探索。  相似文献   

10.
研究焊接缺陷磁光成像检测方法,基于法拉第旋转效应,分析交变磁场下焊接缺陷磁光成像特征与漏磁场之间的关系。建立焊接缺陷的三维有限元模型,对不同类型和宽度的焊接缺陷漏磁场分布进行模拟,并在交变磁场激励下对不同焊接缺陷进行磁光成像无损检测试验,通过试验验证了焊接缺陷检测模型的有效性。研究结果表明,漏磁场分布与缺陷的类型和宽度密切相关,随着宽度增大,缺陷漏磁场的磁感应强度垂直分量亦增大;在相同宽度下,未熔合、表面裂纹、亚表面裂纹和无缺陷磁光图像灰度峰谷差值呈递减趋势,磁光图像灰度值可与漏磁场强度相匹配;所建焊接缺陷模型和磁光成像试验能有效地描述不同焊接缺陷对漏磁信号和图像灰度值分布的影响,有助于提高焊接缺陷检测和质量评估。  相似文献   

11.
激励电流对脉冲涡流检测的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在采用脉冲涡流技术进行缺陷检测时,不同激励线圈中的电流会存在一定的差异。为研究不同线圈内激励电流对检测结果的影响,首先分析了不同线圈内激励电流的时频特征,然后研究了被测试件缺陷尺寸和材料属性不同时,不同激励电流作用下差分检测信号的频谱特征,分析了激励电流对检测信号频谱特征的影响规律。最后通过实验对分析结果进行了验证,结果表明:当被测试件缺陷尺寸不同时差分检测信号频谱特征受激励信号影响的规律也不同。  相似文献   

12.
脉冲涡流无损检测技术综述   总被引:12,自引:0,他引:12       下载免费PDF全文
不同于传统的谐波激励的涡流检测方法,脉冲涡流检测采用方波或阶跃方式激励,其测量的是涡流在构件中的衰减。由傅里叶理论可知,脉冲涡流激励中包含多种频率成分,根据电磁场理论,低频电磁波有更深的穿透深度,因而也就可能检测出更深的缺陷。由于脉冲涡流检测时,激励已经停止,因而传统涡流阻抗分析方法已经不适用于脉冲涡流检测信号分析,需要寻找新的信号处理方法或数据解释方法;同时由于导磁材料与非导磁性材料特性不同,信号特性差异极大,上述问题不论从理论上还是从工程上对脉冲涡流检测技术都提出了极大的挑战。从检测理论模型、传感器、信号处理方法及工程应用等方面,对脉冲涡流检测技术作论述,指出该技术进一步发展需要研究的问题,更好地推动脉冲涡流检测技术的发展。  相似文献   

13.
管道内外壁缺陷的有效区分是对缺陷进行有效量化的前提,提出一种基于动生涡流的高速漏磁检测过程中管道内外壁缺陷的定位区分方法,利用涡流磁场与外磁场的耦合作用时内外壁磁场信号的变化差异特征区分缺陷位置。首先建立高速漏磁检测数学模型,分析了涡流分布特点以及涡流磁场与外磁场耦合作用规律,利用有限元方法计算分析不同位置时,耦合作用规律对管道内外壁磁化状态影响及内外壁缺陷漏磁场信号差异特征;设计高速漏磁检测实验平台,对不同运行速度、不同检测位置处钢管内外壁缺陷区分效果进行实验研究。结果表明,接近磁化线圈位置时,管壁内产生的涡流磁场方向与管道外壁磁场方向相同、与管道内壁磁场方向相反,在离开磁化线圈位置时,涡流磁场方向与管道外壁磁场方向相反、与管道内壁磁场方向相同;不同检测位置处,管壁磁场变化规律相反,且速度越快,磁化状态影响受影响程度越大,内外壁漏磁场信号差异特征越明显,高速检测时可有效对管道内外壁缺陷进行定位区分,实验结果和理论分析具有很好的一致性。  相似文献   

14.
钢铁工业中的铁磁性材料屈服强度的检测依赖拉伸检测,增加了检测成本,为此提出了一种多特征融合的铁磁性材料屈服强度脉冲涡流检测方法。提取脉冲涡流响应信号的时域特征、频域特征,然后建立各个信号特征与材料屈服强度的神经网络模型,最后用神经网络模型对材料的屈服强度进行估计。该方法是一种无损检测方法,检测误差不超过5%。  相似文献   

15.
李伟  左宪章  刘佳  张云 《仪表技术》2014,(2):27-29,43
脉冲漏磁检测技术采用频谱丰富的脉冲作为激励信号,响应信号中包含多个频率的分量,从而增强了激励场对检测结构的穿透力,达到对不同深度缺陷的检测效果。根据脉冲漏磁检测原理,设计了基于LabVIEW的脉冲漏磁无损检测系统。系统由脉冲漏磁检测电路、上位计算机、数据采集卡以及相关软件组成。重点介绍了系统中的机械扫描机构、传感器模块设计及虚拟仪器软件。通过对标准试件进行检测实验,表明该系统具备良好的检测性能。  相似文献   

16.
脉冲漏磁检测的三维场特征分析及缺陷分类识别   总被引:1,自引:0,他引:1  
漏磁检测方法广泛应用于石油、运输及化工等行业中金属的缺陷检测.介绍了漏磁检测原理,采用有限元法建立了三维缺陷脉冲漏磁检测模型,分析了缺陷脉冲漏磁场B_x、B_y和B_z分量的特点.结果表明,与传统漏磁检测系统提取缺陷漏磁场水平分量B_x和法向分量B_z进行缺陷识别相比较,三维缺陷脉冲漏磁场分量的提取将提供更多有关缺陷尺寸、位置等信息,尤其是当外加磁场方向与缺陷主平面近似平行时.最后给出了实验验证,实验结果与仿真分析有较好的一致性,这说明有限元仿真分析对实际脉冲漏磁检测系统的设计有重要的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号