首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
2.
Many of the significant advances in our understanding of atmospheric particles can be attributed to the application of mass spectrometry. Mass spectrometry provides high sensitivity with fast response time to probe chemically complex particles. This review focuses on recent developments and applications in the field of mass spectrometry of atmospheric aerosols. In Part II of this two-part review, we concentrate on real-time mass spectrometry techniques, which provide high time resolution for insight into brief events and diurnal changes while eliminating the potential artifacts acquired during long-term filter sampling. In particular, real-time mass spectrometry has been shown recently to provide the ability to probe the chemical composition of ambient individual particles <30 nm in diameter to further our understanding of how particles are formed through nucleation in the atmosphere. Further, transportable real-time mass spectrometry techniques are now used frequently on ground-, ship-, and aircraft-based studies around the globe to further our understanding of the spatial distribution of atmospheric aerosols. In addition, coupling aerosol mass spectrometry techniques with other measurements in series has allowed the in situ determination of chemically resolved particle effective density, refractive index, volatility, and cloud activation properties.  相似文献   

3.
在线测量气溶胶大小和化学组分的质谱技术与应用   总被引:1,自引:0,他引:1  
介绍了在线连续监测大气单粒子气溶胶的粒径和化学组分的飞行时间质谱仪。本装置采用喷嘴加两个skimmer构成的差分真空进样,双光束空气动力学测量技术,激光解吸附电离和双极飞行时间质谱技术。利用这套装置对室内外的空气进行了实际的测量,该技术可以在线测量气溶胶的粒径分布,并同时对气溶胶的化学组分进行实时监测。  相似文献   

4.
采用自制的X射线离子诱导成核纳米颗粒物生成装置,通过纳米扫描迁移率颗粒物粒径谱仪(Nano-SMPS)测量纳米颗粒物通过毛细管之前、之后的粒谱分布,获得了纳米颗粒物穿透率随毛细管的内径、长度及进样流量的变化曲线,并对纳米颗粒物在毛细管中的传输损耗进行实验探究。同时,结合气溶胶颗粒物传输沉积模型,对纳米颗粒物的穿透率进行理论计算,并与实验测量值进行比较和讨论。结果表明,对于粒径小于10 nm的纳米颗粒物,受布朗运动等因素的影响,其穿透率与毛细管的尺寸及进样流量有较强的相关性。此外,采用毛细管进样接口结合激光电离气溶胶飞行时间质谱仪对部分纳米颗粒物的化学成分进行检测,获得了初步的实验结果。  相似文献   

5.
This review explores some of the design choices made with single particle mass spectrometers. Different instruments have used various configurations of inlets, particle sizing techniques, ionization lasers, mass spectrometers, and other components. Systematic bias against non-spherical particles probably exceeds a factor of 2 for all instruments. An ionization laser tradeoff is the relatively poor beam quality and reliability of an excimer laser versus the longer wavelengths and slower response time of an Nd-YAG laser. Single particle instruments can make special demands on the speed and dynamic range of the mass spectrometers. This review explains some of the choices made for instruments that were developed for different types of measurements in the atmosphere. Some practical design notes are also given from the author's experience with each section of the instrument.  相似文献   

6.
在线单粒子质谱研究进展   总被引:1,自引:0,他引:1  
单粒子质谱(SPMS)能够在线测量气溶胶粒子的粒径和化学组成,在大气化学研究、环境污染监测等方面有广泛的应用前景。一般的在线单粒子质谱主要由进样系统,粒径测量系统和化学组分分析系统三部分组成。气溶胶粒子来源广泛,组成复杂,对于不同类型的气溶胶粒子需要采用不同的电离方式。用于研究气溶胶颗粒的单粒子质谱种类繁多,激光电离单粒子质谱和电子轰击电离单粒子质谱是最早出现也是目前发展较为成熟的两种仪器。近年来出现了一些采用软电离技术的新型单粒子质谱,能够对气溶胶的化学组分进行定量分析。随着科技的不断发展,提高仪器的性能以扩展仪器的应用范围,仪器的商品化将是单粒子质谱仪发展的主要趋势。  相似文献   

7.
汽车尾气中的挥发性有机物(VOCs)是主要的人为排放污染源之一,排放到大气环境中的VOCs具有很高的反应活性,能够参与臭氧的生成,是形成二次有机气溶胶等污染物的重要前体物质。因此,研制开发适用于现场实时、在线检测VOCs的便携式分析仪器,是现代科学仪器发展的重要方向之一。本工作利用苯系物标准气体对自行研制的便携式膜进样真空紫外灯单光子电离飞行时间质谱仪整机进行性能测试,仪器的质量分辨率优于350,质量精度优于1×10-4,对苯系物的检测限可达μg/m3级,动态范围优于3个数量级,仪器的总质量小于25 kg。将仪器放置户外对汽车尾气进行现场测试,基于该仪器高时间分辨率的特点,初步研究了汽车尾气排放VOCs的变化趋势与发动机工作状态的相关性。该仪器有望应用于环境应急事故、现场长期监测、化工园区生产工艺过程监控以及无组织排放等领域。  相似文献   

8.
基于FPGA的单粒子气溶胶质谱时序控制系统   总被引:3,自引:0,他引:3  
在单粒子气溶胶的粒径分布和化学组分实时分析的激光质谱系统中,应用现场可编程门阵列技术,讨论了高速数字电路中的精确定时问题,并研制了一套测量系统,对实际大气中气溶胶粒子进行粒径大小的统计分布和质谱的测定。  相似文献   

9.
实时在线单颗粒气溶胶飞行时间质谱仪的研制   总被引:3,自引:0,他引:3  
针对大气气溶胶单颗粒粒径及成分同时检测的要求,自行研制了一台实时在线单颗粒气溶胶飞行时间质谱仪,并对仪器各部分的原理和结构进行了描述。用实验室产生的标准气溶胶粒子对仪器进行粒径和质量数校正,同时考察激光能量对邻苯二甲酸二辛脂(DOP)气溶胶颗粒的打击效率及其谱图的影响。室内气溶胶颗粒采样证明了该仪器具有较高的同位素测量精度及质量分辨率。  相似文献   

10.
In recent years a major effort by several groups has been undertaken to identify bacteria by mass spectrometry at the single cell level. The intent of this review is to highlight the recent progress made in the application of single particle mass spectrometry to the analysis of microorganisms. A large portion of the review highlights improvements in the ionization and mass analysis of bio-aerosols, or particles that contain biologically relevant molecules such as peptides or proteins. While these are not direct applications to bacteria, the results have been central to a progression toward single cell mass spectrometry. Developments in single particle matrix-assisted laser desorption/ionization (MALDI) are summarized. Recent applications of aerosol laser desorption/ionization (LDI) to the analysis of single microorganisms are highlighted. Successful applications of off-line and on-the-fly aerosol MALDI to microorganism detection are discussed. Limitations to current approaches and necessary future achievements are also addressed.  相似文献   

11.
Mass spectrometry (MS) offers many advantages over other established spectroscopic techniques employed for the investigation of processes in condensed phase. The sensitivity, specificity, and speed afforded by MS-based methods enable to obtain very valuable insights into the mechanism of complex dynamic processes. Off-line methods rely on quenching to halt the progress of the reaction of interest and allow for the implementation of a broad range of analytical procedures for sample fractionation, isolation, or desalting. On the contrary, on-line methods are designed to carry out the real-time monitoring of dynamic processes through a continuous uninterrupted analysis of reaction mixtures, with the only caveat that the sample solutions be directly amenable to the available ionization technique. The utilization of rapid mixing devices in direct connection with a mass spectrometer or included in off-line schemes provides access to the initial moments of a reaction, which can offer very important information about the reaction mechanism. This report summarizes the different off- and on-line strategies developed to study chemical and biochemical reactions in solution and obtain kinetic/mechanistic information. The merits of the various experimental designs, the characteristics of the different instrumental setups, and the factors affecting time resolution are discussed with the aid of specific examples, which highlight the contributions of MS to the different facets of the investigation of dynamic processes in condensed phase.  相似文献   

12.
This review will be concerned with the gas phase chemistry of 1,2- and 1,3-dipolar systems that contain a carbon-nitrogen bond. Although most of these compounds are stable molecules under normal conditions, certain congeners are reactive species that cannot be prepared using conventional procedures. The isolation and observation of these elusive compounds therefore require appropriate experimental conditions such as those provided by the gas phase of a mass spectrometer. In these experiments, the radical cations, corresponding to the molecule under study, must be prepared via indirect procedures, including dissociative electron ionization, on-line flash-vacuum pyrolysis-mass spectrometry, or ion-molecule reactions. Their characterization is mainly based on collisional activation and ion-molecule reactions. The formation of the corresponding highly reactive neutrals is attempted by neutralization-reionization mass spectrometry. This review presents more than one hundred different molecules together with their methods of preparation and the experiment used to identify them.  相似文献   

13.
Ambient mass spectrometry (AMS) has grown as a group of advanced analytical techniques that allow for the direct sampling and ionization of the analytes in different statuses from their native environment without or with minimum sample pretreatments. As a significant category of AMS, plasma-based AMS has gained a lot of attention due to its features that allow rapid, real-time, high-throughput, in vivo, and in situ analysis in various fields, including bioanalysis, pharmaceuticals, forensics, food safety, and mass spectrometry imaging. Tens of new methods have been developed since the introduction of the first plasma-based AMS technique direct analysis in real-time. This review first provides a comprehensive overview of the established plasma-based AMS techniques from their ion source configurations, mechanisms, and developments. Then, the progress of the representative applications in various scientific fields in the past 4 years (January 2017 to January 2021) has been summarized. Finally, we discuss the current challenges and propose the future directions of plasma-based AMS from our perspective.  相似文献   

14.
A system of membrane injection of a sample into a portable mass spectrometer which is used for determining the concentration of organic components in complex mixtures is described. Spectra of samples containing alkanes from methane to hexane have been measured. The data obtained using the membrane and diaphragm inlets to are compared. The potentialities of membrane inlets for portable mass spectrometers intended for environmental and process monitoring are shown.  相似文献   

15.
Lignin is currently one of the most promising biologically derived resources, due to its abundance and application in biofuels, materials and conversion to value aromatic chemicals. The need to better characterize and understand this complex biopolymer has led to the development of many different analytical approaches, several of which involve mass spectrometry and subsequent data analysis. This review surveys the most important analytical methods for lignin involving mass spectrometry, first looking at methods involving gas chromatography, liquid chromatography and then continuing with more contemporary methods such as matrix assisted laser desorption ionization and time-of-flight-secondary ion mass spectrometry. Following that will be techniques that directly ionize lignin mixtures—without chromatographic separation—using softer atmospheric ionization techniques that leave the lignin oligomers intact. Finally, ultra-high resolution mass analyzers such as FT-ICR have enabled lignin analysis without major sample preparation and chromatography steps. Concurrent with an increase in the resolution of mass spectrometers, there have been a wealth of complementary data analyses and visualization methods that have allowed researchers to probe deeper into the “lignome” than ever before. These approaches extract trends such as compound series and even important analytical information about lignin substructures without performing lignin degradation either chemically or during MS analysis. These innovative methods are paving the way for a more comprehensive understanding of this important biopolymer, as we seek more sustainable solutions for our human species’ energy and materials needs.  相似文献   

16.
17.
单颗粒气溶胶实时在线监测飞行时间质谱仪的研制   总被引:1,自引:1,他引:0  
介绍国内第一台采用空气动力学透镜进样系统的质谱仪。这种系统有效地提高进样效率和检测效率。本仪器优化双光束测径装置和激光解析电离装置的空间结构,缩短气溶胶漂移空间从而提高小颗粒的检测极限。  相似文献   

18.
Macrolides are a group of antibiotics that have been widely used in human medical and veterinary practices. Analysis of macrolides and related compounds in food, biological, and environmental matrices continue to be the focus of scientists for the reasons of food safety, pharmacokinetic studies, and environmental concerns. This article presents an overview on the primary biological properties of macrolides and their associated analytical issues, including extraction, liquid chromatography-mass spectrometry (LC-MS), method validation, and measurement uncertainty. The main techniques that have been used to extract macrolides from various matrices are solid-phase extraction and liquid-liquid extraction. Conventional liquid chromatography (LC) with C18 columns plays a dominant role for the determination of macrolides, whereas ultra-performance liquid chromatography (UPLC) along with sub-2 microm particle C18 columns reduces run time and improves sensitivity. Mass spectrometry (MS), serving as a universal detection technique, has replaced ultraviolet (UV), fluorometric, and electrochemical detection for multi-macrolide analysis. The triple-quadrupole (QqQ), quadrupole ion trap (QIT), triple-quadrupole linear ion trap, time-of-flight (TOF), and quadrupole time-of-flight (QqTOF) mass spectrometers are current choices for the determination of macrolides, including quantification, confirmation, identification of their degradation products or metabolites, and structural elucidation. LC or UPLC coupled to a triple-quadrupole mass spectrometer operated in the multiple-reaction monitoring (MRM) mode (LC/MS/MS) is the first choice for quantification. UPLC-TOF or UPLC-QqTOF has been recognized as an emerging technique for accurate mass measurement and unequivocal identification of macrolides and their related compounds.  相似文献   

19.
对AAS仪器的关键部件光源、分光系统与光电检测器件以及实验室研发的CS-AAS仪器装置,近年来取得的进步进行了评述,结合2004年由德国Analytik jena AG公司在世界上首次推出ContrAA 300型顺序扫描连续光源火焰原子吸收光谱商品仪器,对CS-AAS仪器装置的发展现状与未来作了分析讨论。此外,还对二极管激光器光源进入AAS领域后引起的变化和各种小型、微型原子化器的出现所兴起小型专用AAS实验仪器装置,以及一次测量背景校正技术的商品化等等作了介绍。  相似文献   

20.
采用毛细管大气压进样接口,结合激光多光子解吸、电离等技术,自行研制了毛细管进样-激光解吸电离气溶胶飞行时间质谱仪,用于在线测量超细纳米颗粒物的化学成分。应用商品化的气溶胶发生器和自制的离子诱导成核反应器,在实验室内分别产生了KCl、NaCl、NaI/NaBr混合物和Air/H2O/SO2混合气体成核反应的粒径小于100 nm的超细纳米颗粒物,并通过质谱仪获得了它们的化学成分信息。结果表明,相对于具有较大粒径的颗粒物,超细纳米颗粒物在激光多光子电离过程中更容易完全原子化电离,但通过改善激光的聚焦条件可以获得超细纳米颗粒物成分的分子信息。实验测量了毛细管大气压进样接口传输超细纳米颗粒物的效率,为0.33%,与国际同行采用类似大气压进样接口传输气体分子的效率一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号