首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微V槽被广泛应用于光纤连接中,其中心距是决定其性能的关键。热误差是数控1加工中最大的误差源之一。根据微V槽超精密机床的拓扑结构,采用多体系统理论算出影响微V槽中心距加工精度的热误差共有10项,再结合多元线性回归理论对这10项热误差项进行辨识。  相似文献   

2.
误差预估是超精密机床设计中的重要环节,在系统的设计阶段用来预测和控制超精密机床的总误差。首先介绍了误差预估在超精密机床设计中的重要作用,对本实验室设计制造的光纤接头V型微槽超精密机床进行简单介绍,详细说明了均方根(RMS)原则在超精密机床误差预估中的应用并计算得到预估误差值。  相似文献   

3.
谢晋  韦凤  田牧纯一 《光学精密工程》2009,17(11):2771-2778
针对微纳米级功能V槽微细加工及评价困难的问题,采用单点金刚石切削方法在超精密机床上对光学玻璃进行V槽的微纳尺度加工,且利用非接触激光检测技术展现V槽的加工形貌。研究目的是分析V槽的微纳米尺度加工的可行性以及找出如何评价V槽加工精度的方法。首先,采用单点金刚石在光学玻璃上进行V槽的微纳尺度切削试验。然后,利用3D激光超精密检测仪器检测加工的V切痕,构建微V槽切痕的形貌图,建立V槽形状误差PV值和V槽尖角圆弧半径的评价模式。最后,分析在微纳尺度加工中切除深度与V槽角度的形成机理以及切削深度对V槽形状误差及其尖角圆弧半径的作用机制。结果表明,在亚微米级尺度加工中存在一个脆/塑性域切除加工状态转变的临界切削深度。在塑性域切削中,金刚石刀具尖角形状可以复制到工件表面,形成深度小于0.386μm、形状误差PV值约0.103μm、尖角半径约为0.182μm的V槽。此外,V槽形状误差PV值在塑性域切除加工中始终保持不变,但在脆性域切除加工中随着切削深度增大而逐渐剧烈加大。而且,V槽尖角圆弧半径在塑性域切削中随着切削深度减小而减小,但为了获得完整的V槽轮廓还需被控制在V槽成型临界界线以下。因此,在处理非接触激光检测的3D数据的基础上,V槽形状误差PV值和尖角圆弧半径可以用来评价V槽微纳尺寸加工的加工精度和微细程度。  相似文献   

4.
针对微V槽阵列元件V槽间距高精度等加工要求,开展了一种微V槽阵列元件磨削加工机床的研究与开发。介绍了机床的机械结构整体布局和主要零部件选型,并详细介绍了机床控制及驱动系统的结构系统。在机床软硬件平台支持下,基于工控机+PMAC运动控制器完成了系统控制软件的开发。针对微V槽间距较高的精度要求,开展了利用激光干涉仪进行测量和误差补偿的研究,并利用所研发的机床进行了加工实验的加工样件检测。实验和检测结果表明,所研发的微V槽阵列机床加工定位精度可控制在±0.5μm内,满足对微V槽阵列元件的高精度要求。  相似文献   

5.
<正> 一、引言机床热态特性是表征机床性能的一个重要方面。Birmingham 大学教授 J.Peklenik的研究分析表明,在精密加工机床中因热变形影响而造成的工作精度误差占总误差的40%~70%。对机床进行热变形成试验正越来越得到人们的重视。机床热稳定后的最高温度与温升已成为控制机床质量的通用技术条件,机床热平衡时间作为描述机床热态特性的指标之一。机床热变形试验中,机床真  相似文献   

6.
利用高速陶瓷电主轴热稳态和热瞬态的热力学模型,研究了热态性能对零件加工精度的影响,结合某高速精密加工中心的主轴单元,用有限元计算和分析了温度场及热平衡时间,将结果与实验进行比较,证明其有效性。结果表明:高速陶瓷电主轴在运转时热量主要来源于内置电机的损耗发热和轴承摩擦生热。前后轴承、定子和转子是热量集中处,最高温度出现在转子与定子间间隙处,为62.23℃,需采用良好的散热措施进行散热;精密磨削加工前应提前启动机床,进行10 min的预热,使机床各部件达到热平衡,减少热变形带来的加工误差,提高加工质量。该建模方法以及热力学模型可为高速电主轴的优化设计和研制提供一定的参考。  相似文献   

7.
基于设计出超精密机床的目的,研究了机床的几何误差建模和误差的灵敏度分析。基于刚体运动学和齐次变换矩阵(Homogeneous Transformation Matrix,HTM)建立了RTTTR配置的超精密五轴机床的几何误差模型,模型涉及37个误差分量。分别对37个误差分量进行了几何误差的灵敏度分析,分析结果将应用于超精密五轴机床的设计与制造上。  相似文献   

8.
热误差严重影响着机床的加工精度,对机床关键部件进行热特性分析是开发精密机床的重要环节.通过测量包括数控机床的特殊位置温度和定位误差在内的热特性,研究了温升与定位误差之间的关系,提出了一种基于贝叶斯神经网络的热误差建模方法.通过K-means聚类和相关系数法来选择温度敏感点,可以有效地抑制温度测量点之间的多重共线性问题....  相似文献   

9.
五轴机床能对复杂的自由曲面进行加工。对五轴机床热误差进行控制,是提高其加工精度的关键所在。针对现有热误差建模方法预测精度较低、通用性和鲁棒性较差的问题,提出一种基于信息融合的五轴机床热误差建模方法。与传统建模方法相比,通过实时调整模型参数,该融合预测方法能够用于不同类型、不同操作条件的机床。将该方法应用于一台双转台五轴机床的实验研究,建立了该机床热误差的融合预测模型。实验结果表明,该方法能够提高热误差模型的预测精度及鲁棒性,从而提高五轴机床加工精度。  相似文献   

10.
陈真  唐旎  郭隐彪 《机电技术》2011,34(4):2-4,7
加工中机床热误差是影响机床加工精度稳定性的关键因素,对其进行准确的分析至关重要。文章运用ANSYS软件建立超精密磨床主轴部件的有限元模型,分析主轴热源及初始条件,边界条件,通过计算得到磨床主轴的温度场、热应力及热变形量。分析结果说明了热误差为超精密磨削的主要误差,为后期加工和试验分析提供了参考依据。  相似文献   

11.
以单点金刚石作为切削刀具的数控机床是一种新型的超精密加工机床,与普通数控机床有许多不同。通过刨削加工微槽的过程介绍该超精密机床的原理和特点。采用刨削加工方式加工微微槽的过程主要分为端面加工和微槽加工两个步骤,具体有:刀具中心调整、主轴调动平衡、数控编程、工件端面加工、侧刀设置、微槽刨削加工等。刀具的尖端与主轴轴线的精准度决定了加工端面中心的微凸点的大小,左右和上下的误差必须在几微米以内。机床主轴转速选择2 000 r/min,该气浮主轴在加工之前必须调节动平衡,要求X向和Y向跳动在100 nm以内。数控程序与普遍数控机床的基本相同,但精度高,NC代码的有效数值一般在小数点后六位。端面加工后表面为镜面,表面粗糙度Ra在100以下,为微槽加工提供了良好的端面。微槽加工时装夹工件的主轴设为C轴模式,完成刨削加工的刀具要侧面安装,刀具沿X轴切削工件表面。实际加工的微槽表面粗糙度Ra为63.573 nm,达到镜面效果。该加工微槽的过程和参数设置可为类似的加工工艺应用提供参考。  相似文献   

12.
论述精密超精密加工的技术内涵和范畴,分析影响精密超精密加工的主要因索.并指出当前国内外精密超精密加工技术研究中的一些关键技术和重点.此外对精密超精密加工中的微/纳米级精密测量技术、误差建模和补偿技术进行介绍。  相似文献   

13.
在精密切削加工技术领域,机床发热变形是影响加工精度的主要因素。设计Labview数据采集软件以及Matlab数据分析软件;对某数控立式加工中心主轴热变形进行测试实验;分析影响主轴热变形的主要因素,即主轴转速、主轴温度对机床主轴热变形的影响;应用人工神经网络技术对热变形进行非线性建模;为精密机床热误差补偿提供技术支撑。  相似文献   

14.
为了提高国内大尺寸光学微结构薄膜的光学级模具制造水平,打破国外在辊筒模具超精密加工装备的垄断,完成了国内首台套大尺寸光学微结构辊筒模具超精密机床的设计、集成以及典型微结构工艺的研究工作。首先,根据辊筒模具表面微结构加工工艺的特点,分析了辊筒模具超精密机床的关键技术并完成了机床结构与运动控制系统设计。在机床系统集成后,完成了运动控制系统的调试。直线轴执行阶梯运动完成了直线轴运动分辨率的测试。其次,通过准直仪和激光干涉仪完成了机床关键轴系的直线度及定位精度的测试和补偿。最后,采用多步切削法切削实验,以降低毛刺高度为目标,完成了V槽阵列的加工工艺参数优化。经测试,该超精密加工机床的直线运动分辨可达到5nm,直线轴的双向定位精度均优于1μm/1 100mm;采用多步切削法加工V槽阵列,最后一次切削深度建议在1~2μm,可以获得合格的V槽阵列。  相似文献   

15.
精密加工和超精密加工技术是先进制造技术的基础和关键,是一个国家制造工业水平的重要标志之一。本书分4篇共14章,内容包括总论、精密加工常用材料、超精密车削、精密和超精密磨削、光整加工、超精密加工机床、精密特种加工及微细加工、微型机械与微型机电系统、精密测量及微尺寸测量技术、微位移技术、误差的在线检测与补偿技术、精密和超精密加工的支持环境及精密基础件加工等。  相似文献   

16.
加速发展我国的精密和超精密加工技术   总被引:3,自引:0,他引:3  
精密和超精密加工技术是机械制造最主要的发展方向之一。本文介绍了精密和超精密加工技术的最新发展情况,如金刚石超精密切削、精密磨削和研磨、精密和超精密机床、精密加工中的检测和误差补偿、精加工的环境条件等。最后提出对我国发展精密和超精密加工技术的一些意见。  相似文献   

17.
随着机床零部件的精度越来越高以及数控系统控制的高速发展,使得几何误差对机床整体的精度影响越来越小。而现代加工机床的加工特点,长时间的处于高速切削和快速进给的状态下连续运转,由于机床运动部件产生摩擦热、切削热以及外部热源等会引起系统的热变形,造成机床床身和主轴丝杠等主要部件的快速升温,且受热不均匀,产生由于温度的变化导致的精度误差,在精密及超精密加工中,热误差的影响非常严重,占机床总误差的40%~70%。通过热误差补偿功能,在不改变机床结构的前提下,能大大提高机床的加工精度和稳定性。  相似文献   

18.
超精密加工技术是高端制造领域的一项关键技术,当前超精密加工已进入纳米尺度,掌握超精密加工误差控制关键技术、保障并提高数控机床的加工精度,已经成为提高加工制造水平的研究热点。系统总结了超精密加工误差补偿技术研究现状及发展趋势,重点介绍了对超精密加工影响最大的几何误差、力诱导误差、热诱导误差及其补偿方法。在此基础上,深入探讨了超精密加工在几何误差分离,切削力、热诱导误差测量与补偿等方面存在的一系列问题,进一步指出超精密加工误差补偿技术还应关注其向高效、高精,通用化,模块化,智能化及柔性化的发展方向。  相似文献   

19.
龙门数控机床主轴热误差及其改善措施   总被引:3,自引:0,他引:3  
依据ISO和ASME标准建立龙门数控(Numerical control,NC)机床热误差测试条件,通过主轴恒转速和变转速热误差试验分析主轴箱温度场分布及其对主轴热误差的影响趋势。建立龙门机床误差元素模型,分析影响机床各坐标轴加工精度的主轴热误差分量。研究发现,主轴热误差和主轴箱温度存在单调对应关系,温度对主轴轴向的热伸长误差的影响要远大于主轴径向的热漂移误差,但温度变化相对各坐标变形存在热延迟和热惯性等特性。对主轴径向精度影响最大的热误差分量是由机床生热产生的同方向的偏移误差和与之垂直的偏转误差;对轴向精度影响最大的则是轴向的偏移误差。针对热误差特点和分布规律,提出结构优化、热平衡、误差补偿建模等3种减小热误差的措施,并对其各自优点进行了分析。  相似文献   

20.
邹君阳  肖民  何云 《机械制造》2012,50(10):8-11
机床热误差是影响机床加工精度的主要因素,目前对热误差的控制主要采取补偿的方法,即通过采集机床热平衡时的温度以及热变形误差来建立数学模型,实现热误差的补偿。通过对XK7132数控铣床进行热边界条件分析,提出了利用ANSYS Workbench软件对机床整机进行稳态热结构分析以及对主轴进行热平衡分析,得到了机床的稳态热变形及主轴温升平衡曲线。由分析结果可知,稳态热变形主要发生在主轴的X轴和Z轴方向,而达到热平衡时所需时间大约为40~50 min,为机床热误差补偿时传感器的布置提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号