首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
基于有限元分析软件ABAQUS建立了高速切削Ti6Al4V的二维正交切削有限元模型,仿真研究了高速切削加工时切削速度、切削深度对切削力大小、切削力波动频率以及锯齿形切屑形态的影响。结果表明:平均切削力在90m/min~360m/min的切削速度范围内趋于平稳,随着切削深度的增大而增大;切削力波动频率随切削深度的增加而减小,随切削速度的增大而增大;切屑锯齿化程度及锯齿化步距都随切削速度及切削深度的增大而增大。  相似文献   

2.
通过单因素和正交切削试验对TA15进行车削加工,分析切削用量对切削力的影响规律,结合极差分析研究切削用量对切削力影响的主次关系,得到最优切削参数。结果表明:切削深度对切削力的影响最大,其次为进给量,切削速度对切削力的影响最小;由于在车削加工中切屑形态对切削力造成一定的影响,切削力随进给量和切削深度的增加而增大,随切削速度的增加呈现波动的趋势。  相似文献   

3.
利用正交设计进行PVD涂层刀具铣削大理石试验,研究切削参数对加工过程中切削力的影响。通过测力仪测得切削力信号,分析信号幅值波动原因。根据试验结果,讨论单一切削参数对切削力的影响趋势。采用最小二乘法原理建立了切削力预测模型,综合分析了切削速度、进给量及切削深度对切削力变化的贡献。探讨切削力出现尖点现象的原因,对预测模型修正并作F检验具有较高的显著性。结果表明,切削深度对切削力的影响最大,切削深度增加导致切削力呈升高趋势;切削速度是影响切削力的次要因素,随着切削速度的提高切削力呈减小趋势;进给量对切削力影响最小,其增大使切削力缓慢变大。  相似文献   

4.
利用软件AdvantEdge建立硬质合金涂层立铣刀三维铣削Ti6Al4V钛合金的有限元分析模型,模拟分析切削参数(切削速度、每齿进给量、轴向切削深度及径向切削深度)对刀具切削温度、切削力的影响规律。研究发现:切削力及切削温度随每齿进给量、轴向切削深度及径向切削深度的增加而增加:切削温度对切削深度的变化较敏感,随轴向切削深度和径向切削深度的增加显著增加;随着切削速度的增加,切削力先增大后减小,临界切削速度为120m/min。  相似文献   

5.
利用软件AdvantEdge建立硬质合金涂层立铣刀三维铣削Ti6Al4V钛合金的有限元分析模型,模拟分析切削参数(切削速度、每齿进给量、轴向切削深度及径向切削深度)对刀具切削温度、切削力的影响规律.研究发现:切削力及切削温度随每齿进给量、轴向切削深度及径向切削深度的增加而增加:切削温度对切削深度的变化较敏感,随轴向切削深度和径向切削深度的增加显著增加;随着切削速度的增加,切削力先增大后减小,临界切削速度为120 m/min.  相似文献   

6.
选定切削参数(切削速度、进给速度、切削深度)设计正交试验,进行CVD氮化钛涂层刀具高速铣削大理石切削力试验,利用测力仪测出各组试验的切削力信号图,分析信号图特征得出切削力值,并记录各组切削力试验结果。分析单一切削参数(切削速度、进给速度,切削深度)对切削力变化的影响规律。采用最小二乘法原理对切削力经验公式回归系数进行参数估计,并对经验公式进行相关性检验,检验结果表明显著性很高。最终通过试验结果得出:切削力随着进给速度和切削深度的增加而增大,随着切削速度的增加而减小;并且切削深度对切削力影响最大,切削速度次之,进给速度对切削力的影响最小。  相似文献   

7.
采用TC11钛合金车削正交试验研究了各车削参数对切削温度和切削力的影响规律,进一步分析车削参数和表面粗糙度的内在联系。结果表明:切削温度与切削力相互影响,当切削速度在50~100m/min时,切削速度越高,刀具对工件挤压越剧烈,且切削温度升高并使工件软化,导致切削力减小。通过极差分析发现,影响切削力的切削参数依次为切削深度>进给量>切削速度,影响切削温度的切削参数依次为切削速度>进给量>切削深度;对于表面粗糙度各切削用量影响程度大小依次为进给量>切削速度>切削深度。在本次试验参数内,得到了最优切削力的切削参数和最优表面粗糙度的切削参数。研究结果对于加工钛合金的切削参数优化提供一定指导。  相似文献   

8.
为了研究钛合金在铣削过程中切削力随着切削参数的变化规律,建立了三维斜角切削有限元模型。通过对材料本构模型,刀—屑接触摩擦模型和切屑分离准则等关键环节建模,采用通用有限元求解器ABAQUS/Ex-plicit对钛合金Ti6Al4V的斜角切削过程进行了模拟,获得了切削速度v、切削深度ap和每齿进给量fz对切削力的变化趋势及影响程度。模拟结果表明:切削力随着切削深度ap和每齿进给量fz的增大而增大,而随着切削速度增大切削力波动很小。切削深度对切削力的影响最大,进给量次之,切削速度对切削力的影响最小。该模型可以为切削参数的合理选择提供参考。  相似文献   

9.
采用PCBN刀具进行高速硬车削AISI P20淬硬钢的切削试验,并通过方差分析研究切削速度、进给量、切削深度和刀尖圆弧半径对切削力的影响.基于获得的试验数据,应用人工神经网络方法建立高速硬车削P20淬硬钢时的切削力预测模型.试验与仿真分析显示,切削力随进给量、切削深度和刀尖圆弧半径的增加而增大,而不同切削速度下的切削力值几乎保持不变;同时,切削深度对切削力的影响最为显著,其次为进给量,再次为刀尖圆弧半径,而切削速度的影响则非常微弱.  相似文献   

10.
基于DEFORM-3D的钛合金切削过程有限元仿真   总被引:1,自引:0,他引:1  
为研究钛合金TC4的切削机理,建立了三维切削有限元模型并对切削过程进行了仿真,获得了不同每齿进给量、切削速度和切削深度下切削力、切削温度的变化规律。仿真结果表明:在各因素中,对切削温度而言,切削速度影响最大,切削深度影响最小;对切削力而言,切削速度影响最小,切削深度影响最大。  相似文献   

11.
通过正交试验,研究分析Al_2O_3/(W,Ti)C/CaF_2梯度自润滑陶瓷刀具切削304奥氏体不锈钢(0Cr18Ni9)时切削要素(切削速度、进给量及切削深度)对三向切削力的影响规律;利用正交表进行方差分析及F检验,得到三个影响因素的主次次序和影响显著性;利用指数回归分析建立陶瓷刀具主切削力的经验公式。试验结果表明,在给定的切削参数范围内,存在主切削力小于背向力的情况;F检验结果表明进给量和切削深度对主切削力有显著影响,而切削速度对主切削力的影响不显著;主切削力和背向力均随着进给量和切削深度的增加而升高。  相似文献   

12.
针对蠕墨铸铁RuT400难加工的问题,通过使用硬质合金涂层刀具对RuT400进行高速铣削试验,以实验参数为基础构建了切削力预测模型,结合其切削性能并使用响应面法对切削参数进行优化。实验结果表明:使用硬质合金涂层刀具切削RuT400是可行的,而且刀具价格便宜,加工经济性更好。切削速度、进给速度、切削深度与切削力之间存在显著的线性关系,根据实际加工参数使用切削力预测模型可以对切削力作出精确预测;切削力随着切削深度的增加以严格的线性方式递增;切削用量对切削力影响的显著性顺序为:切削深度进给速度切削速度。一般情况下,较小的切削深度,适当的进给速度和较大的切削速度能获得较低的切削力和良好的加工效率。  相似文献   

13.
PCBN刀具高速切削镍基高温合金GH4169的有限元模拟   总被引:1,自引:0,他引:1  
采用PCBN刀具对镍基高温合金GH4169进行了高速切削试验,通过正交试验分析了切削速度、切削深度、进给量对切削力的影响规律,在试验基础上利用多元线性回归分析基于最小二乘法建立了切削力的预测模型;基于Deform-3D软件建立了高速切削的有限元模型,对切削过程进行有限元模拟,得到了切削力、切削温度和应力场的分布;以切削力为指标对有限元模型进行了验证。结果表明:切削力随切削速度的增大而先增大后减小,随切削深度、进给量的增加而增大;回归分析显著性检验结果证明所建立的模型能对切削力进行有效预测,三向切削力模拟的综合平均偏差小于15%,验证了有限元模型的正确性和有效性。  相似文献   

14.
为验证微切削加工的表面微结构具有良好的减摩效果,可以用来减小发动机关键摩擦副的摩擦磨损,运用AdvantEdge有限元仿真软件研究切削用量对于硅铝合金金刚石车削过程的影响分析,基本规律是:切削速度对切削温度的影响最大,进给量次之,影响最小的是切削深度;切削深度和进给量增大使切削力增大,但二者影响程度不同,进给量不变,切削深度增大一倍,使切削力增大一倍,切削深度不变,进给量增加一倍,切削力增幅减小;切削力随着切削速度的增加先增大后减小最后趋于稳定。使用单晶金刚石车刀对硅铝合金试样进行微槽结构的切削加工,结果表明:在微切削尺度范围内,切削深度对表面粗糙度R_a影响不明显;表面粗糙度值随着进给量的增加先减小后增大;主轴转速通过产生切削热和对刀具磨损产生影响来影响表面粗糙度。将微切削加工的表面微结构与光滑表面进行往复摩擦对比实验,结果表明在负载为1 N的情况下,微槽结构表面的摩擦系数比光滑表面的摩擦系数减小了8%。  相似文献   

15.
为更好的研究金属材料的切削加工过程,以DEFORM 3D软件为平台,利用有限元法对等温淬火球墨铸铁的切削进行了建模与仿真,分析得到了切削速度、切削深度、进给量对切削力的影响规律。通过有限元法计算刀具的切削力,得出了切削力分别在不同切削深度和不同进给量下的变化规律,并以试验数据为基础,将仿真数据和传统经验公式的计算数据进行对比与分析。研究结果表明,影响切削力的主要因素是切削深度,其次是进给量,影响最小的是切削速度。  相似文献   

16.
研究了不同切削方向,不同铣削参数对单板层积材铣削过程中切削力的影响规律,从而为实际加工提供指导。试验结果表明,在一定铣削参数下,单板层积材纵向铣削和横向铣削时,纵向铣削的主切削力比横向铣削的主切削力大;切削速度对主切削力影响不是很明显;主切削力都随切削深度增大而增大,并得出了各自的主切削力与切削深度的线性回归方程,为实际切削加工提供了可供参考的经验公式。  相似文献   

17.
采用分子动力学模拟方法研究单晶铜材料表面纳米切削特性。通过对单晶铜纳米切削过程进行分子动力学建模、计算与分析,研究了不同切削速度及切削厚度对单晶铜材料表面纳米切削过程中微观接触区域原子状态和切削力变化的影响规律。研究结果发现:在单晶铜表面纳米切削过程中,切削速度越高,切屑堆积体积越大,切屑里原子的排列越紧密,位错缺陷分布区域越大;在同种切削速度下,切削厚度越大,在刀具前方堆积的切屑体积越大,位错缺陷越多。不同切削速度及切削厚度下,切削力曲线均在切削初期呈上升趋势,达到稳定切削状态后围绕稳定值进行波动,但在切削初期,切削速度及切削厚度越大,切削力上升幅度越大;达到稳定切削状态后,切削速度、切削厚度越大,切削力越大。  相似文献   

18.
通过运用有限元分析软件ABAQUS建立二维平面单颗磨粒切削模型,对Si C颗粒体积分数为45%的Si Cp/Al的加工过程进行了仿真与实验研究,分析了不同的加工参数对切削力产生的影响,并研究了切削后已加工表面的表面形貌。实验结果和仿真结果均表明在一定条件下切削深度比切削速度对切削力的影响更显著,当切削深度一定时,切削速度对切削力的变化影响不大;当切削速度一定时,切削深度越大,切削力越大。单颗金刚石磨粒对复合材料中增强相的作用主要表现在Si C颗粒的旋转、移动,而由此造成的不连续的坑洞是加工过程中表面形成的主要缺陷。  相似文献   

19.
把正交车铣方法应用到复合材料薄壁件的加工中,使用ABAQUS有限元仿真软件,建立了Si Cp/Al复合材料车铣薄壁件的仿真模型,通过高速正交车铣仿真实验研究了切削速度、工件转速、进给量和切削深度对切削力的影响规律。仿真实验得出切削深度对切削力影响最大,随切削深度的增加车铣切削力明显增大,因此该因素的参数选择在切削加工中应着重考虑;而其它三个因素对切削力的影响次之且影响程度相当,切削力变化趋势一致,都是随各因素参数增加而略有增大。  相似文献   

20.
在切削速度v=100~300m/min、每齿进给量fz=0.01~0.1mm/z、轴向切削深度ap=1~3mm条件下,对30CrNi2MoVA高强钢进行了高效铣削试验,研究了切削用量对切削力的影响。试验结果表明,切削速度对切削力的变化影响不大,随切削速度的增加径向力略有增加,切向力略有减小;轴向切削深度和进给量对切削力的变化影响较大,径向力和切向力均随轴向切削深度和进给量的增大而近似呈线性增大,且增幅较大;轴向力随切削用量的变化较小,且在不同切削用量下轴向力相差不大。在试验切削用量范围内,总体表现为径向力>切向力>轴向力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号