首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
潘兵奇  吕勇  易灿灿  于李鹏 《机械强度》2020,42(5):1017-1023
针对同步压缩变换(Synchrosueezing Transform,SST)中短时傅里叶变换(Short-time Fourier Transform,STFT),固定窗效应在处理非线性时变信号上的不足,提出了一种自适应窗口旋转短时傅里叶变换(Adaptive Window Rotating Short Time Fourier Transform,AWRSTFT)方法,该方法通过自适应匹配一系列的旋转算子,实现信号在全局上的频率带宽最小。进一步地,在SST的框架下,用AWRSST方法替换STFT,提出了自适应窗口旋转同步压缩变换(Adaptive Window Rotating Synchrosueezing Transform,AWRSST)方法,并用于电机转速信号的处理,该方法能够兼顾AWRSTFT和SST的优势,进一步锐化时频脊线,从而增强时频表示的能量聚集水平。通过数值仿真和电机转速估计实验,验证了该方法的有效性。  相似文献   

2.
广义参数化时频分析通过构造匹配的参数化变换核,能够有效提高强调频信号的时频能量聚集性。然而,受短时傅里叶变换中窗函数结构的影响,利用该方法获得的时频能量分布在真实瞬时频率附近始终存在能量扩散现象。同步压缩变换利用同步压缩操作可将短时傅里叶变换处理后的时频能量压缩至真实瞬时频率位置,然而,同步压缩变换仅适用于分析频率成分恒定的纯谐波信号。以短时傅里叶变换为纽带,将两种时频分析方法相结合,提出了广义参数化同步压缩变换。考虑到旋转机械振动信号多为多分量信号,通过迭代处理的方式,依次获取各单分量信号的时频能量分布,对其进行叠加得到最终的时频能量分布。通过数值仿真以及变转速下转子不对中、滚动轴承外圈故障模拟试验验证了所提方法的有效性。  相似文献   

3.
S变换用于滚动轴承故障信号冲击特征提取   总被引:2,自引:0,他引:2  
为从低信噪比的滚动轴承故障信号中提取出冲击特征,以便于进行轴承故障诊断,引入S变换的信号处理方法。以短时傅里叶变换(short time Fourier transform,简称STFT)以及连续小波变换(continuous wavelet transform,简称CWT)为理论基础,分别推导得出了连续S变换的定义式,并利用快速傅里叶变换(fast Fourier transform,简称FFT)实现S变换离散化计算。S变换克服了STFT时频分辨率固定的缺点,弥补了CWT缺乏相位信息的不足。仿真信号研究表明,S变换在信号整个频带上具有良好的时频分辨率和时频聚集性,能够提取低信噪比信号中的冲击特征,且性能优于STFT和CWT。最后对一组实际的滚动球轴承故障振动信号进行S变换处理,结果表明,S变换能够方便有效地从中提取出周期性的冲击特征,从而指导滚动轴承相关故障的诊断。  相似文献   

4.
航空发动机快变信号特征提取是航空发动机健康监测与故障诊断的关键技术之一。针对航空发动机快变信号特征提取需求及其瞬时频率快变的特点,提出了匹配同步压缩变换方法。构造了匹配快变信号调频结构的瞬时频率估计算子,能同时考虑快变信号时频能量随频率和时间方向的分布,从而提高快变信号时频表示的能量聚集性,提升航空发动机快变信号提取能力。通过航空发动机主轴承寿命试验机的碰摩故障试验,以及某型航空发动机的碰摩故障诊断工程案例,验证匹配同步压缩变换方法对于航空发动机快变信号处理的有效性。工程应用结果表明,对于航空发动机转子系统动静碰摩故障,匹配同步压缩变换能够有效提取该故障导致的振动信号瞬时频率快速振荡的强时变特征,从而诊断转子系统碰摩故障。  相似文献   

5.
分析6205-2RS轴承内圈故障时变信号,提取故障特征。通过对短时傅里叶变换与Wigner-Ville分布数值仿真实验比较,明确了短时傅里叶变换与Wigner-Ville分布的时频分析优缺点。针对非平稳轴承振动信号,利用短时傅里叶变换,结合Wigner-Ville分布进行了故障特征提取。通过提高短时傅里叶变换汉明窗点数,结合Wigner-Ville分布参数调整与轴承部件的旋转频率计算,给出了6205-2RS轴承内圈故障特征结果。该方法能较准确地诊断轴承内圈的故障现象。  相似文献   

6.
同步提取变换(synchroextracting transform, 简称SET)通过提取短时傅里叶变换(short-time Fourier transform, 简称STFT)在瞬时频率位置的时频系数可获得较理想的时频谱,该方法提高了时频分辨率,减少了交叉项的影响,一定程度上抑制了噪声对STFT时频谱的干扰。针对在SET时频谱的基础上进行信号分量的重构与故障诊断拓展方面的应用,提出了一种基于顺序统计滤波器(order statistics filter, 简称OSF)的SET信号分量重构方法。首先,利用边际谱表征SET时频谱中信号的幅值在整个频率范围内随频率变化的情况;其次,采用顺序统计滤波器分割边际谱,将分割所得边界映射至SET时频谱后,利用SET逆变换重构信号分量;最后,利用峭度指标筛选包含丰富故障信息的分量并进行包络分析,提取故障特征。仿真信号及滚动轴承内圈故障信号的处理结果证明了该方法的有效性。  相似文献   

7.
旋转机械振动信号中的冲击特征通常代表着轴承损伤、齿轮损伤等常发故障的出现,为了准确提取信号中的冲击分量,提出一种基于改进群延迟估计的同步压缩变换时频分析方法。分析时间重分配同步压缩变换原型算法在处理实际强频变信号时的特性,发现其易导致明显的时频模糊问题。构建基于局部最大搜索算法的改进型经典群延迟估计方法,以克服TSST在分析强频变信号时带来的时频模糊问题,并在此基础上提出了群延迟自适应估计策略。形成一种基于改进群延迟估计的自适应同步压缩变换方法,在其基础上提出一种振动信号中脉冲特征提取方法。仿真信号和试验数据分析结果表明,该方法可较准确地提取出振动信号中的冲击特征,相较其他常用时频分析方法能够生成更为聚集的时频表示。  相似文献   

8.
针对滚动轴承故障诊断中存在的非平稳故障信号的特征提取困难这一难题,提出利用同步压缩小波变换(SWT)对故障信号的监测数据进行处理的方法。首先对信号进行连续小波变换(CWT),其次对小波变换系数进行同步压缩变换(SST),然后对SST系数进行自适应阈值去噪,之后在有效信号数据的频率中心附近进行积分提取,最后用提取到的有效信号进行重构。对实测的滚动轴承故障信号进行处理验证,结果表明,SWT具有较高的信号提取精度以及降噪能力,同时具有较高的时频分辨率,能够将故障信号转换为高分辨率的时频谱,弥补了CWT在这方面的不足。  相似文献   

9.
提出了用连续小波变换与傅里叶变换相结合进行轴承外圈故障识别的新方法。先通过Morlet连续小波变换对故障轴承信号进行不同尺度的分解.再对其获得的小波系数进行快速傅里叶变换来识别故障特征频率。然后对不同信号做小波系数能量谱进行对比。优点在于能够在强噪声背景下较为精确的识别外圈故障。实际测试验证了新方法的正确性。  相似文献   

10.
由于变桨轴承不完全转动的工作特殊性,基于振动或应变等常规监测手段难以奏效,为此提出一种基于声发射(acoustic emission,简称AE)技术监测方法获取信号,并采用短时傅里叶方法(short time Fourier transform,简称STFT)进行分析诊断的方法。首先,研究了AE技术的信号采集方法,推导了STFT的原理及过程,并在某风电机组变桨轴承上进行实验验证;其次,先后在时域、频域及时频域对有裂纹数据和无裂纹数据进行对比,发现时频域基于STFT分析方法可以有效发现裂纹;最后,通过新的裂纹数据进行验证,可以确认裂纹特征。结果表明:AE信号能较好地获取变桨轴承的状态信息,STFT分析方法可以较好地识别裂纹故障,较少受工况或其他因素的影响,有较高的实用价值。  相似文献   

11.
利用经验模态分解滤波器组特性可调整性,结合短时傅里叶变换(STFT)技术识别轴承异音。在研究高斯随机噪声经验模态分解(EMD)的基础上,运用数值方法证实EMD滤波器组特性随判别参数SD改变,指出类似于二进制小波滤波器组特性只是一种特殊条件下的分解现象。根据轴承振动加速度的广谱性质,利用参数SD对EMD滤波器组特性可调性,对滚动轴承振动加速度信号按异音测量要求进行EMD自动频段分解。对前3阶本征模态进行STFT变换,用三维图刻画轴承振动的幅值大小、频率大小、周期和随机分布冲击特性,设定阈值,在时频域上刻画轴承的异音。该方法揭示了轴承异音分布模式,能通过异音识别控制轴承加工质量。  相似文献   

12.
针对滚珠丝杠副丝杠滚道故障定位困难问题,对存在单一点蚀故障的滚珠丝杠副进行了研究,提出了一种基于短时傅里叶变换(STFT)的滚珠丝杠副丝杠滚道故障定位方法,通过理论分析确定了针对滚珠丝杠副振动信号STFT理想的窗函数及其参数。利用STFT分析了滚珠丝杠副仿真与实验振动加速度信号,根据丝杠滚道出现故障时的频率响应特性以及信号瞬时频率随时间的变化,以瞬时频率为特征确定了故障位置。仿真与实验研究结果对比表明,STFT时频分析方法能够用于有效地识别出滚珠丝杠副的故障位置。  相似文献   

13.
根据固有时间尺度分解和短时傅里叶变换方法的优点,提出固有时间尺度分解和短时傅里叶变换相结合的故障诊断方法。采用ITD方法故障信号分解为若干个固有旋转分量和一个单调趋势项,提取特征信号并确定故障;运用短时傅里叶变换方法对分解的PR分量进行时频分析得到特性频率并进行相关预判断。以齿轮箱为试验对象进行诊断,结果表明,该方法可以有效地提取故障特征信号,并对隐藏的信号进行提取,实现有效诊断故障和预防故障发生。  相似文献   

14.
针对传统时频分析方法的固定窗在分析非线性调频信号时存在时频聚集性不高等问题,在短时傅里叶变换基础上引入同步压缩理论,利用信号的局部信息特征,提出一种窗口伸缩优化的时频同步压缩变换算法,并在此基础上推导出二阶及高阶的窗口伸缩优化的同步压缩变换算法.该方法能够兼顾同步压缩变换和重排的优势,进一步锐化时频脊线,从而增强时频表...  相似文献   

15.
字玉  周俊 《机电工程》2022,(7):949-954
为了有效地提取出滚动轴承故障信号的冲击特征,提出了一种基于S变换时频谱和奇异值中值分解(SVMD)算法的滚动轴承故障诊断方法。首先,利用S变换对滚动轴承原始振动信号进行了时频变换,得到了其时频系数矩阵,通过SVMD对时频系数矩阵进行了计算,筛选出合适的奇异值用以降噪;然后,通过仿真的方式,对结果进行了S逆变换,以获得信号的时域冲击特征;最后,以滚动轴承(型号N205)外圈、滚动体故障为例,进行了故障信号冲击特征提取实验,通过对轴承的外圈和滚动体故障数据分析处理,对基于ST-SVMD算法的有效性进行了验证。研究结果表明:通过采用基于ST-SVMD算法,得到了滚动轴承外圈的故障频率,该频率与该型号轴承特征频率基本一致;基于ST-SVMD算法,得到了滚动轴承滚动体的故障频率,该频率与该型号轴承特征频率基本一致;该结果证明,基于ST-SVMD算法在滚动轴承故障信号冲击特征的提取方面是有效的。  相似文献   

16.
为了正确提取磁悬浮轴承跌落过程中发生反向涡动时轴轨迹的时频特征,本文引入了广义线性调频小波变换(GLCT)。为分析不同时频方法在信号时频特性分析的优缺点,分别采用了短时傅里叶变换、Wigner-Ville分布、GLCT和Hilbert transform对磁悬浮轴承跌落过程中反向涡动情况下轴系Y轴(竖直)方向上的位移信号进行了处理。结果显示,短时傅里叶变换因为分析窗不具备瞬时频率调频率的自适应性,时频聚焦性不理想,瞬时频率的计算精度易受其影响;Wigner-Ville分布中交叉项会混淆真实时频分布,也会带来计算误差;而Hilbert transform过分依赖信号光滑性,噪声影响较大;GLCT具备理想的时频聚焦性,易于获得正确的瞬时频率。这有利于后续重新悬浮控制程序的开展。  相似文献   

17.
分别采用短时傅里叶变换和小波变换对雨刮直流电机的轴承异响和蜗轮蜗杆异响故障的振动和噪声信号进行了分析,得出了这两类故障的时频特性,为特征参数提取和实现故障诊断提供了直接依据。通过对比,初步验证了短时傅里叶分析和小波分析的正确性与适用性,发现小波分析更具有优势。  相似文献   

18.
摩擦振动的时频特性   总被引:4,自引:0,他引:4  
采用短时傅里叶变换(Short-time Fourier transform,STFT)和Zhao-Atlas-Marks分布(ZAMD)这两种时频分析技术对往复滑动条件下的摩擦振动时频特性进行研究。用例子探讨了这两种时频分析技术的特点,联合采用STFT 和ZAMD方法可得到较高的时频分辨率。对摩擦振动信号的时频特性研究表明,摩擦振动的频率从其初始形成到消失的全过程中基本没有发生变化,这个特性显示在摩擦振动的形成和消失过程中没有遇到结构非线性因素。还讨论了时频不变特性的物理意义,指出用模态耦合理论不能满意地解释摩擦振动有限和消失现象。  相似文献   

19.
分数阶傅里叶变换作为傅里叶变换的扩展,它在傅里叶变换的基础上增加了一个新的优点,它在诊断滚动轴承故障时,可以使不稳定的轴承故障信号的时频特性更好的展示出来。再通过分析故障信号的时频特性,从而得出滚动轴承故障是外圈故障、内圈故障还是滚动体故障,并分析其故障程度。  相似文献   

20.
针对图傅里叶变换(graph Fourier transform,简称GFT)方法在提取轮对轴承故障特征信号的过程中,将信号中包含的部分噪声成分提取出来,从而对故障诊断结果产生影响这一问题,提出了一种基于稀疏表示以及图谱理论相结合的轮对轴承故障诊断方法。首先,根据具有局部损伤的滚动轴承振动信号特点构造合适的过完备字典库;其次,采用正交匹配追踪法求解系数实现对振动信号的稀疏表示;最后,通过图傅里叶变换方法将信号中含有的冲击分量集中到图谱域的高阶区域,从而对轮对轴承故障进行诊断。通过仿真数据以及试验数据处理结果,对提出方法的有效性进行了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号