首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
光学非球面坐标测量中位姿误差的分离与优化   总被引:2,自引:0,他引:2  
在开发了一种专用非球面坐标测量机的基础上,分析了测量系统与工件在空间6个自由度上的相对位姿误差的关系,建立了位姿误差的数学模型。利用模型参数估计的方法,建立了测量数据与名义面形之间基于最小二乘法的优化模型,得到了上述位姿误差的最小二乘估计,并据此对工件面形误差测量结果进行校正,消除了位姿误差的影响,提高了测量结果的可信度与精度,最终使测量系统精度达到0.5 μm,重复精度优于0.3 μm。  相似文献   

2.
研制了一种基于柱面坐标系的新型专用非球面坐标测量机,通过测量非球面多条子午截线实现对非球面形的全口径检测。在结构设计方面,采用了龙门框架加回转运动的形式,利用高精度气浮导轨实现水平运动,利用端齿盘实现对工件的精确分度,通过点位测量的方式实现对非球面形的高精度检测。在软件方面,建立了系统的数学模型和柱面坐标系下回转对称非球面形全口径检测算法,并在VC++6.0和Matlab平台上编制了测控软件和数据处理软件。系统最大测量口径为600 mm,测量高度为25 mm,最小测量步长为1 mm,经过系统误差补偿后,系统精度优于1 μm,满足了精磨、粗抛阶段非球面形检测要求。试验表明:系统运行良好,精度满足要求,同时具有良好的通用性,可用于非球面精磨、粗抛阶段的检测。  相似文献   

3.
小型非球面轮廓测量仪的原理及应用   总被引:3,自引:3,他引:3  
介绍了自行研制的FLY-I非球面轮廓仪的设计以及测量软件数学模型,其实用精度为1~2 μm.光学元件的抛光精度取决于精磨精度,本实验室现有的LOH高精度铣磨机床经过对第1次精磨后的光学元件面形进行修正,2次精磨后其精磨精度可达到2 μm.研究了这一非球面轮廓仪以配合LOH铣磨机床,测量得到1次精磨后的面形误差数据,经过误差反馈进行2次精磨,以保证光学元件的精磨精度.通过多次实验以及数据处理、分析,证明自行设计、装调的非球面轮廓仪达到了设计的精度要求,可满足实验室,光学加工车间对小型非球面精磨阶段面形的检测要求,即精磨面形误差在2 μm以内,同时也可直接用于中低精度非球面光学元件的最终检测.  相似文献   

4.
气囊抛光过程的运动精度控制   总被引:1,自引:0,他引:1  
针对用于球面、非球面光学元件超精密光学加工的气囊抛光技术,提出了一套控制抛光过程中气囊运动精度的方法。该方法通过控制加工单元的温度,保证抛光过程中设备运动精度达到50μm;使用坐标传递法,使检测数据二维方向对准不确定度达到0.30~0.70mm。另外,基于磨头去除量估计与反馈修正法,提高精抛过程面形误差收敛效率。最后,通过磨头探测校准法,将磨头与加工工件法向位置精度提高至10μm。实际抛光实验显示:使用运动精度控制法在280mm口径的平面精密抛光中获得的面形加工精度为0.8nm(RMS),在160mm口径的凹球面精密抛光中获得的面形加工结果为1.1nm(RMS),实现了超高精度面形修正的目的,为超高精度球面、非球面光学元件加工提供了一套行之有效的方法。该方法同样适用于其他接触式小磨头数控抛光方法。  相似文献   

5.
周炼  安晨辉  侯晶  陈贤华  王健 《光学精密工程》2017,25(12):3079-3088
针对非球面光学元件加工对圆弧金刚石砂轮形状误差测量的需求,提出了砂轮三维几何形貌在位检测与误差评价方法。建立了砂轮外圆面螺旋扫描轨迹测量数学模型,利用位移传感器获取了砂轮表面轮廓数据;对得到的数据匀滑滤波后沿圆周展开并进行插值处理,得到砂轮三维几何形貌。然后,根据非球面平行磨削加工特点,提出评价圆弧砂轮形状精度的指标。通过提取三维几何形貌轴截面轮廓,进行最小二乘圆弧拟合得到不同相位处的圆弧半径与圆心坐标,并由误差分离获得砂轮表面圆弧的圆度误差、圆周跳动误差及轮廓圆心轴向偏差。最后,对非球面加工圆弧金刚石砂轮进行检测,获得了砂轮的三维几何形貌以及多个关键尺寸及其误差数据:即圆弧金刚石砂轮的平均圆弧半径为55.442 3mm,半径波动极差为0.16mm,中央±8mm环带内圆弧的圆度误差约为5μm,圆周跳动误差约为2μm,截面轮廓圆心轴向位置相对偏差为0.008mm。根据检测结果,进行了大口径复杂非球面磨削实验,得到的元件面形P-V值为4.62μm,RMS值优于0.7μm,满足工程的实际需求。  相似文献   

6.
光电系统检测回转误差的实验研究   总被引:1,自引:0,他引:1  
回转误差运动的光电检测系统基于摄影测量学原理.利用CCD图像传感器跟踪目标标靶特征点的运动轨迹,直接获得回转轴的回转运动,避免了现有传统方法必须通过误差分离间接得到回转误差的过程.标靶特征点位置的提取直接影响整个系统的测量精度,因此针对高精度和高稳定性的要求提出了选用十字丝作为合作标志.系统软件部分基于MATLAB 7.0开发,主要对标靶选取实验对比分析以及十字丝特征点不同的提取方案探讨,模拟实验证明:直线拟合交点法具有较高的定位精度和良好的稳定性,可达到3.28μm的精度.  相似文献   

7.
摆臂式轮廓测量法通过测量非球面与某一球面之间的偏离量实现对非球面形的测量,但无法测量非球面的顶点曲率半径.在开发了测量试验系统的基础上,通过对测量原理的深入研究,利用被测非球面名义面形与测量数据建立了测量参考球面半径非线性最小二乘优化模型,利用该模型,可以在测量非球面形误差的同时获得被测非球面的顶点曲率半径值.同时分析了该模型的理论收敛误差,并在MATLAB下对算法进行了仿真.最后对直径200mm,顶点曲率半径1400mm的凹形抛物面镜进行了测量实验.仿真和测量试验表明了算法的有效性.  相似文献   

8.
Shack-Hartmann波前传感器检测大口径圆对称非球面反射镜   总被引:1,自引:0,他引:1  
针对大口径非球面反射镜在研磨阶段后期其面形与理想面形存在较大偏差,且表面粗糙度较大、反射率较低,采用轮廓仪和普通干涉仪检测无法满足测试要求等问题,提出采用动态范围大且精度高的Shack-Hartmann波前传感器来检测大口径非球面反射镜.研究分析了Shack-Hartmann波前传感器检测系统的原理及系统误差并编写了相应的数据处理软件.为了验证该方法的可行性,对已经加工完成的350 mm口径旋转对称双曲面面形进行了检测,测量得到的面形误差PV值、RMS值分别为0.388λ、0.043λ(λ=632.8 nm);与干涉测量的标准结果进行了对比,得到的面形偏差PV值、RMS值分别为0.014λ和0.001λ.对比结果表明,Shack-Hartmann波前传感器的测量结果正确可靠,从而验证了Shack-Hartmann波前传感器检测大口径非球面反射镜的可行性.  相似文献   

9.
采用635nm波长半导体可见光激光和10.5μm波长半导体红外激光作为干涉光源,设计了635nm和10.5μm双波段共光路透射式红外干涉仪,实现了可见光波段干涉测试与红外光波段干涉测试共光路,且双光路共用可见光对准。双波段共用机械式相移系统,并采用635nm测试光分段驻点标定10.5μm测试时相移器的长行程误差。研制的双波长红外干涉仪系统的红外测试精度达到PV优于0.05λ,RMS优于0.02λ,系统重复性RMS优于0.001λ。采用该干涉仪测试口径为400mm×400mm,离轴量为800mm的离轴非球面,得到边缘最大偏差值为21.9μm,能够实现大口径离轴非球面从粗磨到精磨高精度加工面形的全过程干涉测试。  相似文献   

10.
为了在地面制造环境下实现大口径空间非球面反射镜的零重力面形加工,建立了基于重力卸载的高精度旋转检测工艺方法。首先对N次等间隔旋转法的基本原理进行了介绍,并结合一块Ф1 290mm ULE材料的非球面反射镜加工实例,分别给出了旋转法实施环节中的旋转角度和偏心误差控制方法,实际角度误差和偏心误差分别优于0.1°和0.1mm。然后,在低精度阶段采用了3次旋转法对检测结果进行处理,主镜面形精度快速收敛至0.029λ-RMS;同时由于应用旋转法而导致镜面上的对称性误差累积放大,进行了针对性去除,面形精度进一步收敛至0.023λ-RMS。最后,采用了6次旋转法对检测结果进行处理并指导光学加工,反射镜6个方向下的实测面形精度为0.012λ-RMS,去除重力变形误差后面形精度达到了0.010λ-RMS,该面形可以认为是卫星入轨后零重力空间环境下的反射镜面形。文中所述加工工艺方法不仅适用于米级口径,还适用于更大口径空间非球面反射镜零重力面形的高精度加工。  相似文献   

11.
研究了空间遥感器用大口径SiC离轴非球面的超声复合磨削加工工艺。分别对磨削原理、金刚石砂轮结合剂选择、机床选取、磨削参数设定等进行了分析,并设计和规划了磨削工艺流程。基于逆向工程原理建立了高精度离轴非球面模型,创立了激光跟踪仪精磨阶段在线测量大口径离轴非球面的工艺。结合工程实践对一口径为700mm×700mm的SiC高次离轴非球面元件进行了逆向工程建模和超声磨削加工试验,并利用激光跟踪仪进行了在线检测。经过3个周期(每个周期4h)的修磨,其面形精度PV值和RMS值分别由45.986μm和7.949μm收敛至12.181μm和2.131μm;与三坐标测试结果进行对比,其PV值和RMS值的偏差分别为0.892 3μm和0.312 8μm。实验显示,提出的磨削工艺实现了大口径SiC离轴非球面的快速精确磨削,其加工精度、效率以及表面质量都有了很大的提高。  相似文献   

12.
考虑飞秒激光跟踪仪仪器轴系的几何误差会影响仪器的指向精度并最终影响坐标测量精度,本文研究了激光光轴与竖轴的几何误差对仪器测量精度的影响。提出了激光光轴与竖轴的同轴度标定方法,以降低其不重合带来的跟踪测量误差。首先,基于几何光学原理建立了光轴与竖轴的几何误差模型,分别分析了光轴与竖轴的倾斜与平移误差对仪器测角精度的影响。然后,针对设计的仪器提出了基于旋转成像原理的光轴与竖轴同轴度的检测方法,并设计了一套同轴度检测装置。最后,基于该检测装置,通过调节两组双光楔完成了激光光轴与竖轴的倾斜与平移误差的标定。结果显示,经标定校准后激光光轴与竖轴的角度误差为3.4″;平移误差为26.1μm,得到的结果为仪器后续建立误差补偿模型奠定了基础。  相似文献   

13.
干涉法实时测量浅度非球面技术   总被引:5,自引:2,他引:3  
提出了一种干涉实时检测非球面的新方法,该方法无需补偿器,CHG等辅助元件就能实现对浅度非球面的测量。对非球面度较小的非球面,直接利用标准球面镜作为参考表面,通过数字干涉仪可以测得全孔径位相分布,将所得的数据剔除参考球面波相对理论非球面的偏差,并运用最小二乘拟合求得机构定位误差,消去此误差,从而能够获得真实的面形信息。利用该方法对一口径为350mm的浅度双曲面进行了测量,通过数据分析和处理得到面形误差的PV值和RMS值分别为0.387λ 和 0.048λ ( =632.8nm)。并将该结果与零位补偿的检测结果相比较,两面形分布是一致的,其PV值和RMS值的偏差分别为0.033λ 和 0.006λ 。说明该技术对检测浅度非球面是切实可行的。  相似文献   

14.
使用红外干涉仪测量非球面面形   总被引:3,自引:3,他引:0  
提出用红外干涉仪在长波工作(λ=10.6μm)的优点检测非球面面形。首先,通过移相算法,使用泰曼型红外干涉仪测量出非球面与标准拟合球面之间的波像差;然后,根据非球面的矢高方程计算出非球面与标准拟合球面之间波像差的理论值,通过比较这两个值,计算出非球面的面形偏差。实验结果表明,使用红外干涉仪测量的非球面与标准拟合球面之间的波像差为8.64μm(PV),与理论波像差(8.11μm)比较接近,测得非球面面形偏差为1.20μm(PV)。为了验证这一方法的准确性,使用计算全息图(CGH)作为补偿镜在可见光干涉仪上测量了同一块非球面,两者测量结果比较吻合。结果表明,此方法有比较强的通用性,可以用于非球面在加工过程中的测试。  相似文献   

15.
为了实现对大型空心回转体厚度的测量,提出了一种基于双激光位移传感器的非接触扫描检测方法。在回转体与双激光位移传感器相对位置未知的条件下,分析了由回转体安装偏心以及传感器光轴与原点不共线时所引入的测量误差,建立了双传感器信号与被测位置厚度之间的数学模型。并借助于相关理论相位差计算法、牛顿迭代法以及循环平移方法,将实际厚度值从传感器信号中提取出来。对回转体厚度检测算法的仿真实验表明,当检测信号中干扰分量的幅值不大于0.3mm时,算法检测厚度的相对误差总体保持在0.5%以内,并将此作为调整旋转台转速的依据。分析实验测量数据发现,两路信号的最大相对平移量为4;通过对数据进行偏心补偿以及平移,本厚度检测算法的测量重复性误差不大于0.05mm,可以实现在随机位置状态下对回转体厚度的高精度检测。  相似文献   

16.
董维新  姚瑶 《机电工程》2013,(12):1481-1484
针对全闭环数控回转轴的关键检测元件—圆光栅的安装误差引起回转轴定位精度差的问题,基于圆光栅测量角度的工作原理,分析了圆光栅在安装时由于光栅定位端面的跳动误差对莫尔条纹的影响规律,推导出了相应的数学关系,建立了回转轴定位误差与光栅定位端面的跳动误差之间的数学模型.数值仿真表明当圆光栅出现端面定位安装误差后,回转轴回转一周,输出的莫尔条纹光强变化经历了一个周期,近似为一正弦曲线.针对上述理论分析,在加工中心回转轴C轴上进行了实验研究,结果表明,通过调整圆光栅端面的跳动误差从原来的70 μm到16 μm,利用高精密单频激光干涉仪对回转轴的定位误差进行了检测,两次测量的定位误差曲线均为正弦曲线,且回转轴的定位精度提高了3倍.研究结果表明,减小圆光栅定位端面的轴向跳动误差可有效提高回转轴的定位精度.  相似文献   

17.
电容传感器线性度标定平台   总被引:1,自引:0,他引:1  
设计了一种电容位移传感器在线标定平台,用于位移的高精度调节和检测。该平台的运动对称中心轴、测量光路的对称中心轴和传感器的传感轴共轴,故从测量原理上减小了阿贝误差。标定平台具有z/tip/tilt调节功能,保证了传感器的传感面和被测面板的被测面之间的装调对准。介绍了标定平台的组成和标定方法的原理,采用对称平行四边形机构实现了微位移调节,基于柔度矩阵法(CMM)分析了导向机构的输出柔度和行程。试验测得动平台行程为735.162μm,和有限元法(FEM)、CMM计算结果的误差分别为7.410%和4.633%,满足行程误差要求。经过标定补偿后,传感器的线性度由0.014 21%提高至0.006 231%。实验结果显示,该线性度标定方法精度高,标定后的传感器满足位移精密调节机构使用要求。  相似文献   

18.
激光干涉微轮廓测量仪   总被引:6,自引:7,他引:6  
基于Michelson干涉仪测量原理研制的微轮廓测量仪,载物平台采用步进电机和压电陶瓷(PZT)两级闭环驱动与定位,步进电机用于快速粗定位和扩大测量范围,压电陶瓷用于精密定位,重复定位精度为10 nm;测量光路采用共干涉系统,对机械振动,温度漂移不敏感;测量范围20 mm×20 mm×0.4 mm,纵向分辨率为0.32 μm,横向分辨率为0.5μm.  相似文献   

19.
光针式三维表面形貌测量仪的研制   总被引:1,自引:0,他引:1  
汪洁  谢铁邦 《工具技术》2006,40(11):58-60
研制了一种基于动态聚焦探测法的新型光针式三维表面形貌测量仪,该仪器可实现表面三维形貌的快速、无损、非接触测量。介绍了该仪器的测量原理、仪器结构、伺服机构的设计并给出了实测结果。仪器垂直测量范围为500μm;垂直方向测量精度可达0·5μm,分辨率为0·01μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号