首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A new method of guideless spatial coordinate measurement technology based on coding pole and vision measurement is proposed. Unequal spacing of bar code is adopted to pole, so that the code combination of pole image in measuring field is unique. Holographic characteristics of numeric coding pole are adopted to obtain pole pose and pole probe position by any section of bar code on the pole. Spatial coordinates of measuring points can be obtained by coordinate transform. The contradiction between high resolution and large visual field of image sensor is resolved, thereby providing a new concept for surface shape measurement of large objects with high precision. The measurement principles of the system are expounded and mathematic model is established. The measurement equation is evaluated by simulation experiments and the measurement precision is analyzed. Theoretical analysis and simulation experiments prove that this system is characterized by simple structure and wide measurement range. Therefore it can be used in the 3-dimentional coordinate measurement of large objects.  相似文献   

2.
Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.  相似文献   

3.
Expandable profile liner(EPL) is a promising new oil well casing cementing technique, and welding is a major EPLs connection technology. Connection of EPL is still in the stage of manual welding so far, automatic welding technology is a hotspot of EPL which is one of the key technologies to be solved. A robot for automatic welding of"8" type EPL is studied. Four quadrants of mathematical equations of the 8-shaped cross-section track of EPL, consisting of multiple arcs, are established. Mechanism program for complex cross-section welding of EPL based on angle detection is proposed according to characteristics of small size, small valleys, and large forming errors, etc. A welding velocity vector control model is established by linkage control of a welding vehicle, a small driven actuator, and a height tracking mechanism. A constant speed control model based on an angle and symmetrical analysis model of rectangular coordinate system for EPL is built. Constraint conditions of constant speed control between each section are analyzed with 4 sections in first quadrant as an example, and cooperation work mechanism of the welding vehicle and the small tracking actuator is established based on pressure detection. The constant speed control model using angle self-test can be used to avoid the need for a precise mathematical model for tracking control and to adapt manufacture and installation deviation of EPL workpiece. The model is able to solve constant speed and trajectory tracking problems of EPL cross-section welding. EPL seams welded by the studied robot are good in appearance, and non-destructive testing(NDT) shows the seams are good in quality with no welding defects. Bulge tests show that the maximum pressure of welded EPL is 35 MPa, which can fulfill expansion performance requirements.  相似文献   

4.
Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop crosscoupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedforward control and a load torque identification with feedforward control. A digital integrated simulation system for the dual servo synchronous drive system is established.Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the worktable works with an unbalanced load. However, the system with proposed scheme shows good synchronous performance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8 μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on crosscoupled integrated feedforward compensation control,which can improve the synchronization precision.  相似文献   

5.
For the purpose of solving the problem that too large pole tip recession (PTR) is produced in magnetic rigid disk heads by mechanical polishing, a chemical mechanical nano-grinding experiment is performed by using a float-piece polisher with a tin plate to achieve a more plane and smoother surface. A basal solution, addition agents and a range of pH value are suitably selected to find a kind of slurry, with which the PTR can be controlled on sub-nanometer scale and the giant magnetic resistance (GMR) corrosion and electrostatic damage (ESD) can be avoided. Moreover, the cause that TiC protrudes from the substrate surface of the heads is studied. The appropriate shape and size of diamond abrasive are selected according to the chemical activation of A1203 and TiC in the same slurry. In this way, the chemical and mechanical interactions are optimized and the optimal surface that has small PTR and TiC asperity is achieved. Ultimatily, the chemical mechanical nano-grinding in combination with mechanical nano-grinding is adopted. Sub-nanometer PTR is achieved and the TiC asperity is eliminated by the chemical mechanical nano-grinding with large size ofmonocrystalline followed by mechanical nano-grinding with smalle polycrystalline diamonds.  相似文献   

6.
The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions--constant, linear, and quadratic--are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25,71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.  相似文献   

7.
The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the efficiency of traditional hydraulic propulsion system controlled by throttle valves is too low.Therefore,in this paper,for small and medium ROVs,a novel propulsion system with higher efficiency based on high speed on/off valve control hydraulic propeller is proposed.To solve the conflict between large flow rate and high frequency response performance,a two-stage high speed on/off valve-motor unit with large flow rate and high response speed simultaneously is developed.Through theoretical analysis,an effective fluctuation control method and a novel pulse-width-pulse-frequency-modulation(PWPFM) are introduced to solve the conflict among inherently fluctuation,valve dynamic performance and system efficiency.A simulation model is established to evaluate the system performance.To prove the advantage of system in energy saving,and test the dynamic control performance of high speed on/off valve control propeller,a test setup is developed and a series of comparative experiments is completed.The smimulation and experiment results show that the two-stage high speed on/off valve has an excellent dynamic response performance,and can be used to realize high accuracy speed control.The experiment results prove that the new propulsion system has much more advantages than the traditional throttle speed regulation system in energy saving.The lowest efficiency is more than 40%.The application results on a ROV indicate that the high speed on/off valve control propeller system has good dynamic and steady-state control performances.Its transient time is only about 1 s-1.5 s,and steady-state error is less than 5%.Meanwhile,the speed fluctuation is small,and the smooth propeller speed control effect is obtained.On the premise of good propeller speed control performance,the proposed high speed on/off valve control propeller can improve the effeciency of ROV propulsion system significantly,and provides another attractive ROV propulsion system choice for engineers.  相似文献   

8.
To measure the performance of high precision air-pressure sensors in below normal pressure,an automatic measurement instrument has been designed and implemented.It can simulate environment of low pressure from 300hPa to 1 000hPa with high accuracy by proportional-integral-derivative(PID)control quickly,and it can also generate various relative humidity by two-pressure control.The results show that this instrument can reach controlled pressure quickly.And it works well with the minimum average pressure difference,and the fluctuation is±0.02hPa at 500hPa.And it can keep in a stable status for a long time.It works well in performance testing of pressure sensors.The structure of the system is simple,takes small investment,and can be operated conveniently.  相似文献   

9.
The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot polishing,in particular,quality of the inlet and exhaust edges can not satisfy the processing requirements.Manual grinding has low efficiency,high labor intensity and unstable processing quality,moreover,the polished surface is vulnerable to burn,and the surface precision and integrity are difficult to ensure.In order to further improve the profile accuracy and surface quality,a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed,which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together.By the mode decision-making mechanism,Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value,and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision.Based on the mathematical model of the force-exerting mechanism,simulation analysis is implemented on DSCAC.Simulation results show that the output polishing force can better track the given signal.Finally,the blade polishing experiments are carried out on the designed polishing equipment.Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility,valve dead-time effect,valve nonlinear flow,cylinder friction,measurement noise and other interference on the control precision of polishing force,which has high control precision,strong robustness,strong anti-interference ability and other advantages compared with MRACFNN.The proposed research achieves high-precision control of the polishing force,effectively improves the blade machining precision and surface consistency,and significantly reduces the surface roughness.  相似文献   

10.
ZERO PHASE ERROR REAL TIME CONTROL FOR FLIGHT SIMULATOR SERVO SYSTEM   总被引:1,自引:1,他引:1  
Flight simulator is an important device and a typical high performance position servo system used in the hardware-in-the-loop simulation of flight control system. Without using the future desired output, zero phase error controller makes the overall system's frequency response exhibit zero phase shift for all frequencies and a very small gain error at low frequency range can be achieved. A new algorithm to design the feedforward controller is presented, in order to reduce the phase error, the design of proposed feedforward controller uses a modified plant model, which is a closed loop transfer function, through which the system tracking precision performance can be improved greatly. Real-time control results show the effectiveness of the proposed approach in flight simulator servo system.  相似文献   

11.
大负载高精度光栅拼接柔顺并联机构的设计方法   总被引:1,自引:1,他引:0  
由于加工工艺的限制,通常采用多块小口径光栅机械式拼接的方法来制备大尺寸光栅。为保证打靶成功,要求光栅拼接机构可以实现纳米级的运动精度。基于压电陶瓷驱动的柔顺并联机构可以达到纳米级的运动精度,但是柔性关节的引入降低了机构的承载能力。为解决柔顺并联机构中存在的“大负载”与“高精度”之间的矛盾,引入驱动与承载单元解耦的思想,基于约束设计法提出一种满足大口径光栅拼接机构大行程、大负载、高精度要求的新型光栅拼接柔顺并联机构,该机构具有刚柔混合、串并混联、三面正交、单点支撑、存在一条恰约束被动支链的特点。为实现光栅拼接机构的高精度运动,对设计的新型光栅拼接机构进行运动学分析,并搭建试验系统测试拼接机构的运动精度。试验结果表明利用所提设计方法设计的光栅拼接柔顺并联机构能满足拼接机构的任务要求。  相似文献   

12.
研究开发了一种新型的大行程、纳米级和计量型三维精密位移系统。精密位移系统采用模块化结构设计,三个方向的驱动机构均采用完全相同的设计结构,分别称为X、Y、Z向一维工作台。位移系统在X、Y、Z三个方向采用粗、精两级驱动,并分别装有计量光栅。其中X、Y两个方向的驱动机构水平放置且为上下层叠式,Z方向上的驱动机构垂直放置。各方向粗驱动采用交流伺服电机配合精密丝杠和直线导轨进行驱动,精驱动采用压电陶瓷微位移器配合柔性铰链进行驱动,每个方向的两级驱动共用一套计量光栅,从而保证了位移系统的大行程、纳米级和计量型。介绍了位移系统的结构设计,分析了位移系统的位移分辨率、位移系统的计量原理以及位移系统的运动性能,从而为位移系统的设计提供理论依据。  相似文献   

13.
The parameterized mechanical model is proposed to optimize chisel-edge grating ruling tool parameters, eliminate corrugated grating lines, improve surfaces roughness of blaze plane, and reduce complex fabrication works such as step-by-step modification of tool guide angle. A mathematical model of force and torque between the diamond tool and the metallic film during the ruling process is deduced to realize optimized diamond tool geometrical parameter design. Then, grating ruling experiments are performed by tools with different guide angles of 75°, 95°, 115° and 135°, respectively. The experiments results agree well with the theoretical calculation value of force and torque. Experiments show that our proposed method is an effective way to solve the corrugated line and fluctuating problems on grating grooves, and can avoid complex and time-consuming technical operations such as step-by-step modification of tool guide angle. This illustrates the significance of our model for practical applications in the ruling of high-performance gratings.  相似文献   

14.
大尺寸反射式光栅是提高天文光谱仪分辨率和啁啾脉冲放大系统输出能量的核心元件。随着天文和激光核聚变技术的发展,大尺寸反射式光栅的研制已成为国内外学者研究的热点。相较于单块大尺寸反射式光栅的研制,拼接法以其难度系数低、制作成本低和待拼接的小光栅易制作、质量高等优点成为了制作大尺寸反射式光栅的主要方法。本文介绍了大尺寸反射式光栅拼接技术的基本原理,详细综述了光栅拼接技术的研究进展,包括光栅拼接误差检测理论、光栅拼接误差分离、拼接光栅波前相位校正、光栅拼接误差维数的削减和光栅拼接装置,最后总结了光栅拼接技术的优缺点并指出了其未来的发展方向。  相似文献   

15.
光栅测量技术的基本内容主要是光栅信号的计数和细分问题。高精度的光栅测量其分辨率要求达到纳米级甚至微纳米级。通过提高光栅刻线密度来提高其测量精度和分辨率是无法达到的。为了使光栅测量具有更高的精度,我们只能对光栅信号进行细分处理。在本文中我们利用LABVIEW软件提出一种软件细分方法,利用光栅信号的两路信号的正负以及绝对值差的正负将信号周期分为八个区间,计算出每个区间的细分值,并且用LABVIEW软件进行编程,从而达到细分的效果。  相似文献   

16.
单基片多次曝光实现光栅拼接的理论分析   总被引:1,自引:0,他引:1  
为减少光栅拼接过程中需要控制的物理量,提出了一种利用单基片多次曝光实现光栅拼接的理论方案。这种拼接方法不但降低了光栅拼接难度,而且还避免了拼接完成后小光栅间的相对移动。对该方案的原理进行了分析,并模拟计算了两块光栅在面内的拼缝和转动对远场光斑特性的影响,获得了无像差情况下光栅拼接的精度。  相似文献   

17.
Alignment measurement of two-dimensional zero-reference marks   总被引:4,自引:0,他引:4  
Alignment with submicron or even nanometer scale resolution is of vital importance in precision engineering. By superimposing a pair of specially coded two-dimensional gratings, the correct alignment position of the two gratings can be obtained by detecting the maximum output of the sharp intensity peak. In this paper, design and fabrication of such two-dimensional zero-reference gratings are introduced. The arrangement of the experiment system is presented in detail. The alignment measurement of the reference marks is tested, and the results are compared with those obtained by autocorrelation method and diffraction analysis. It is found that experimental results are in good agreement with theoretical analysis.  相似文献   

18.
本文从光栅成像理论出发,导出了具有结构简单,且能在大间隙下工作的光栅成像型位移传感器。并系统地探讨了这种传感器的理论,给出其实验结果。  相似文献   

19.
This paper presents the design, characterization, and control of a flexure-based roll-to-roll (R2R) printing system that achieves nanometer level precision and repeatability. The R2R system includes an unwinding/rewinding module, a web guide mechanism, and a core positioning stage consisting of two monolithic compliant X–Y stages that control the position/force of the print roller. During the printing process, capacitance probes, eddy current sensors and load cells are used to monitor the displacements of the flexure stage and contact force in real time. Control strategies, including decoupling, PID, and cascade control, have been implemented to decouple the cross-axis and cross-stage motion coupling effect and improve the overall precision and dynamic performance. In actual printing processes, the contact force and roller position can be uniformly controlled within ±0.05 N and ±200 nm respectively across a 4 in. wide PET web. To demonstrate the performance, a positive microcontact printing (MCP) process is adapted to the R2R system, printing various fine metal patterns, e.g., optical gratings and electrodes, in a continuous fashion.  相似文献   

20.
许铀  高群 《仪器仪表学报》2017,38(2):336-342
光栅编码器的误差使得柔性测量臂(AACMM)在不同位置、不同构型下的精度呈现一定的规律。掌握由光栅编码器精度引起的位置精度在工作空间的分布规律,有利于指导柔性测量臂的标定和测量。以六关节测量臂为研究对象,分析末端执行器位置精度与光栅编码器精度区间之间的关系,并定义了基于光栅编码器精度的位置精度评价指标,在整个工作空间下描述其分布情况。验证试验包括:比较不同关节下光栅编码器精度区间对末端执行器位置精度的影响;与目前常用Monte Carlo方式进行柔性测量臂精度分布特性对比;利用其分布特性,对不同区域进行单点和标准球直径测量。实验结果表明,本方法能更直观、全面地描述光栅编码器精度对柔性测量臂位置精度在工作空间分布情况,通过该分布确定优化测量区域,指导实际操作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号