首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
A novel 3D optical method for measuring and evaluating the springback in sheet metal forming is presented and its principle, program and steps are studied. The optical method includes a measuring method and evaluation indexes. The point cloud, obtained using photogrammetry and surface scanning systems, is used as the workpiece shape after springback. The original mould is regarded as the CAD model before springback. The point cloud and CAD model are aligned in Geomagic Qualify. A cutting line for the point cloud or CAD model can be obtained at any point in any direction of their cross sections. The springback is calculated as the difference between any two corresponding key points on the two cutting lines. The evaluation index S consists of a 3D springback value w and its vectors along x, y and z directions. Feasibility of the optical method is verified by using a refrigerator door shell.  相似文献   

2.
回弹是由工件在卸载后的弹性变形引起的。板料成形过程中为了控制成形件的最终形状,必须进行回弹设计优化。准确预测回弹对于板料成形过程的模具设计非常重要。降低回弹模拟结果与试验结果的偏差是设计过程中的难题。基于NUMISHEET’02的自由弯曲标准考题考虑板材与模具间的接触演变过程,建立了一个有限元模型来预测回弹。采用一个常规的优化方法对有限元分析中的材料和单元模型进行了分析,研究发现不同模型对回弹结果有较大影响。模拟结果与参考文献中的试验结果比较表明了模型的正确性和可行性。  相似文献   

3.
板料成形中的回弹计算和模具修正   总被引:10,自引:0,他引:10  
邵鹏飞  王秀喜  车玫 《机械强度》2001,23(2):187-189
利用动力显式有限元计算程序MSC/DYTRAN,采用动力松弛法模拟了板料成形及回弹过程,计算出板料成形后的回弹量:提出“位移描述-结点修正”法,以回弹量为依据通过反向位移补偿和插值算法,编制程序自动对模具网格结点进行修正,通过反复迭代计算,最终可获得生成理想形状制件所必需的凸,凹模尺寸。  相似文献   

4.
为满足金属板材数控渐进成形中支撑制作的需要,提出一种从板材件的计算机辅助设计模型自动生成支撑计算机辅助设计模型的方法。采用STL数据模型,根据板材件曲面曲率的变化和成形过程中板材的减薄规律,计算出成形过程中板材厚度的变化量,通过对STL模型进行不等距偏置,生成了能够自适应板材厚度变化、并能保证挤压工具头与支撑之间合理间距的支撑计算机辅助设计模型。最后,给出了支撑计算机辅助设计模型生成实例。  相似文献   

5.
Springback prediction is an important issue for the sheet metal forming industry. Most sheet metal elements undergo a complicated cyclical deformation history during the forming process. For an accurate prediction of springback, the Bauschinger effect must be considered to determine accurately the internal stress distribution within the sheet metal after deformation. Based on the foundations for isotropic hardening and kinematic hardening, Mroz multiple surface model, plane strain assumptions, and experimental observations, a new incremental method and hardening model is proposed in this paper. This new model compares well with the experimental results for aluminum sheet metal undergoing multiple-bending processes. As is well known, aluminum is one of the most difficult sheet metals to simulate. The new hardening model proposed in this paper is not only a generic model for springback prediction but also a hardening model for sheet metal forming process simulation.  相似文献   

6.
An algorithm of NURBS surface fitting for reverse engineering   总被引:3,自引:0,他引:3  
Reverse engineering is an approach for constructing a CAD model from a physical part through dimensional measurement and a surface model. Different from conventional methods, this paper develops a new algorithm by which a desired fitted surface is obtained with less computation. Let selected m×n measured points be control points to construct B-spline or NURBS surface, then modify this constructed surface by using all the measured points and least squares minimization. A new algorithm for parameterization for measured points is also presented in this paper. The effectiveness and efficiency of these proposed algorithms are demonstrated.  相似文献   

7.
Based on Hill’s yielding criterion and plane strain condition, the explicit expressions of elastoplastic constitutive model are derived in this paper which takes into account the effects of transverse stress, neutral surface shifting, and sheet thickness thinning on the sheet springback of air-bending. Then, this model is embedded into ABAQUS software platform by means of programming. Finally, 3D ABAQUS finite-element models (FEM), used to form the semiellipse-shaped workpiece with super length and large opening of sheet metal, are established, and the multiple-step incremental air-bending forming and springback processes are simulated. The simulation and experiment results show that the data predicted with the new constructed constitutive model under the plane strain condition are in much better agreement with experimental data than those predicted with the constitutive model built-in ABAQUS. It can be taken as a valuable mathematical tool used for multiple-step incremental air-bending forming simulation of large area sheet metal.  相似文献   

8.
The Pre-Processing of Data Points for Curve Fitting in Reverse Engineering   总被引:24,自引:0,他引:24  
Reverse engineering has become an important tool for CAD model construction from the data points, measured by a coordinate measuring machine (CMM), of an existing part. A major problem in reverse engineering is that the measured points having an irregular format and unequal distribution are difficult to fit into a B-spline curve or surface. The paper presents a method for pre-processing data points for curve fitting in reverse engineering. The proposed method has been developed to process the measured data points before fitting into a B-spline form. The format of the new data points regenerated by the proposed method is suitable for the requirements for fitting into a smooth B-spline curve with a good shape. The entire procedure of this method involves filtering, curvature analysis, segmentation, regressing, and regenerating steps. The method is implemented and used for a practical application in reverse engineering. The result of the reconstruction proves the viability of the proposed method for integration with current commercial CAD systems.  相似文献   

9.
There exist errors between the manufactured workpieces and the CAD models due to the springback of sheet-metal incremental air-bending forming. To reduce these errors, an off-line closed-loop control iterative algorithm, combined by fast Fourier and wavelet transform, is developed from the displacement adjustment method (DAM), smooth displacement adjustment method (SDAM) and deformation transfer function method (DTFM) for die surface. With this algorithm, the mould surface of sheet-metal incremental air-bending forming could be properly corrected, and the springback errors of the formed workpieces could be effectively reduced. In order to reduce mould cost and labor cost, the springback tests of workpieces forming, needed in the iterative process of closed-loop control system, are substituted by finite element model (FEM) simulation. The above correction algorithm was used in a semiellipse-shape workpiece incremental air-bending forming. Its average errors are +0.74/−0.39 mm. The results show that the mould correction algorithm with Fourier and wavelet transform is reasonable and the means of FEM simulation are effective. It can be taken as a new approach for sheet-metal multi-step incremental air-bending forming and mould design.  相似文献   

10.
There exists some error between the manufactured part shape and the designed target shape due to springback of this part after forming. To reduce the error, an iterative algorithm of closed-loop control for correcting tool path of the single-point incremental forming, based on Fast Fourier and wavelet transforms, has been developed. Moreover, the data of the springback shapes, after unloading, of the sheet metal parts formed with the trial and corrected tool paths, used for iterative correction of tool path in the algorithm, are obtained with finite element model (FEM) simulation. Then, a truncated pyramid-shaped workpiece, whose average errors are +0.183/?0.175 mm, was made with the corrected tool path after three iterations solved by the above algorithm and simulation data. The results show that the tool path correction algorithm with Fourier and wavelet transforms is reasonable and the means with FEM simulation are effective. It can be taken as a new approach for single-point incremental forming of sheet metal and tool path design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号