首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Seam Tracking Technology for Hyperbaric Underwater Welding   总被引:1,自引:1,他引:0  
Automatic weld seam tracking technology to be used in hyperbaric underwater damaged pipeline repair welding is much more important, because of poor bevel preparation and severe working condition. A weld seam tracking system based on digital signal processing(DSP) passive light weld image processing technology has been established. A convenient charge coupled device(CCD) camera system was used in the high pressure environment with the help of an aperture and focus altering mechanism to guarantee overall image visibility in the scope of pressure below 0.7 MPa. The system can be used in the hyperbaric environment to pick up the real welding image of both the welding arc and the welding pool. The newly developed DSP technology was adopted to achieve the goal of system real time characteristics. An effective weld groove edge recognition technique including narrow interesting window opening, middle value wave filtering, Sobel operator weld edge detecting and edge searching in a defined narrow area was proposed to remove the guide error and system accuracy was ensured. The results of tracking simulation and real tracking application with arc striking have proved the validity and the accuracy of the mentioned system and the image processing method.  相似文献   

2.
Accurate seam tracking plays a critical role in acquisition of good weld. During laser butt joint welding, the laser beam focus must be controlled to follow the weld trajectory. The key problem to be solved is the automatic identification of weld position. An approach to detect the micro gap weld (gap width is less than 0.05 mm) based on magneto-optical imaging (MOI) is proposed. The laser butt joint welding of carbon steel was carried out. A magnetic excitation device was used to magnetize the weldment, and it was found that magnetic field distribution at the weld was different from other regions. The magnetized weldment was detected by using a magneto-optical sensor, and magneto-optical images of the weld were captured. By analyzing and processing weld MO images with low contrast and strong magnetic field noises, the weld center position could be detected accurately. Weld MO images at different laser welding speeds were investigated to analyze the varieties of image characteristics. Experimental results indicated that the magneto-optical imaging technique could be applied to detect the micro gap weld accurately, which provides a novel approach for automatic identification and tracking of micro gap weld during laser welding.  相似文献   

3.
设计了一套由三轴直角坐标机器人、线激光传感器和工业计算机组成的焊缝跟踪系统。研究了该系统所涉及的测量原理、特征点测量方法和基于模糊自适应的控制方法。通过高斯核相关算法(KCF)在焊接过程中实时检测焊缝特征点,并根据测量原理计算获得特征点相对于相机坐标系的三维坐标值。设计了一种自适应模糊控制器,通过自适应模糊控制器计算坐标的偏差值和偏差变化率得到焊枪末端运动轨迹的控制量,同时对模糊控制器的输入输出论域、模糊规则和隶属函数进行实时动态更新。实施了焊缝跟踪实验。结果显示:采用最大焊接电流为350 A的惰性气体保护焊(MIG),在强烈弧光和飞溅的干扰下,该系统能实时跟踪焊接工件,跟踪精度为0.325 3mm,传感器测量频率为20Hz。焊接过程中焊枪末端运行平稳,焊缝轨迹跟踪准确,且抗干扰能力,能满足焊接应用要求。  相似文献   

4.
一种智能型焊缝跟踪系统的研制   总被引:4,自引:0,他引:4  
论述一种智能型焊缝跟踪系统,采用直接拍摄电弧式视觉传感器检测焊缝跟踪偏差,并通过一个自调整模糊控制器实现偏差的调节。整个跟踪过程可通过屏幕实时观察,所有的参数设置都通过人机对话实现。此外,还提出了一种新的焊缝图像处理方法来实时检测焊缝。试验表明,该系统能够对GTAW对接焊缝实现精确的跟踪。  相似文献   

5.
基于爬壁机器人移动平台和单目相机的图像采集系统,设计了一种焊后焊缝图像处理方法,将改进的自适应中值滤波算法与灰度形态学方法结合,实现从信噪比较高的图像中提取特征。采用基于边缘检测和Hough变换的焊缝位置提取算法,经测试识别准确率达70%,且单幅图像平均处理时间为200ms,能满足管道爬壁机器人行进过程中的实时焊缝跟踪,并提供了一种引导机器人沿焊缝前进的自主定向方案。  相似文献   

6.
In this study, a laser-based machine vision system is developed and implemented to monitor and control welding processes. The system consists of three main modules: a laser-based vision sensor module, an image processing module, and a multi-axis motion control module. The laser-based vision sensor is designed and fabricated based on the principle of laser triangulation. By developing and implementing a new image processing algorithm on the platform of LabVIEW, the image processing module is capable of processing the images captured by the vision sensor, identifying the different types of weld joints, and detecting the feature points. Based on the detected feature points, the position information and geometrical features of the weld joint such as its depth, width, plates mismatch, and cross-sectional area can be obtained and monitored in real time. Meanwhile, by feeding these data into the multi-axis motion control module, a non-contact seam tracking is achieved by adaptively adjusting the position of the welding torch with respect to the depth and width variations of the weld joint. A 3D profile of the weld joint is also obtained in real time for the purposes of in-process weld joint monitoring and post-weld quality inspection. The results indicate that the developed laser-based machine vision system can be well suited for the measurement of weld joint geometrical features, seam tracking, and 3D profiling.  相似文献   

7.
Image capturing and processing is important in using vision sensor to effectively track the weld seam and control the weld quality in robotic gas metal arc welding (GMAW). Using vision techniques to track weld seam, the key is to acquire clear weld images and process them accurately. In this paper, a method for real-time image capturing and processing is presented for the application in robotic seam tracking. By analyzing the characteristic of robotic GMAW, the real-time weld images are captured clearly by the passive vision sensor. Utilizing the main characteristics of the gray gradient in the weld image, a new improved Canny edge detection algorithm was proposed to detect the edges of weld image and extract the seam and pool characteristic parameters. The image processing precision was further verified by using the random welding experiments. Results showed that the precision range of the image processing can be controlled to be within ±0.3 mm in robotic GMAW, which can meet the requirement of real-time seam tracking.  相似文献   

8.
Automatic welding technology is a solution to increase welding productivity and improve welding quality, especially in thick plate welding. In order to obtain high-quality multi-pass welds, it is necessary to maintain a stable welding bead in each pass. In the multi-pass welding, it is difficult to obtain a stable weld bead by using a traditional teaching and playback arc welding robot. To overcome these traditional limitations, an automatic welding tracking system of arc welding robot is proposed for multi-pass welding. The developed system includes an image acquisition module, an image processing module, a tracking control unit, and their software interfaces. The vision sensor, which includes a CCD camera, is mounted on the welding torch. In order to minimize the inevitable misalignment between the center line of welding seam and the welding torch for each welding pass, a robust algorithm of welding image processing is proposed, which was proved to be suitable for the root pass, filling passes, and the cap passes. In order to accurately track the welding seam, a Fuzzy-P controller is designed to control the arc welding robot to adjust the torch. The Microsoft Visual C++6.0 software is used to develop the application programs and user interface. The welding experiments are carried out to verify the validity of the multi-pass welding tracking system.  相似文献   

9.
Passive vision based seam tracking system for pulse-MAG welding   总被引:2,自引:2,他引:0  
Welding robots have been widely used in manufacturing process to substitute for human welders. However, most of them are rigid and cannot adjust to variations in the weld seam positions caused by natural welding environmental factors. To address this problem, this paper presents a passive vision-based robotic welding system, which can realize the seam tracking function for pulse-MAG welding. In this paper, the light spectrum of the welding process is analyzed to determine the optical filters used during the image capture. Then, a robust image processing method is proposed to extract the offset from the image which contains much noise. The transformation formula is calibrated to obtain the relationship between the image coordinate system and the robot coordinate system. The tracking strategy is designed to improve the tracking precision and the stability of the welding process. Finally, experiments are conducted on straight line and curved line seam to verify the feasibility of the developed system.  相似文献   

10.
A study on a vision sensor system for tracking the I-Butt weld joints   总被引:1,自引:0,他引:1  
In this study, a visual sensor system for weld seam tracking the I-butt weld joints in GMA welding was constructed. The sensor system consists of a CCD camera, a diode laser with a cylindrical lens and a band-pass-filter to overcome the degrading of image due to spatters and arc light. In order to obtain the enhanced image, quantitative relationship between laser intensity and iris opening was investigated. Throughout the repeated experiments, the shutter speed was set at 1/1000 second for minimizing the effect of spatters on the image, and therefore the image without the spatter traces could be obtained. Region of interest was defined from the entire image and gray level of the searched laser stripe was compared to that of weld line. The differences between these gray levels lead to spot the position of weld joint using central difference method. The results showed that, as long as weld line is within ±15° from the longitudinal straight line, the system constructed in this study could track the weld line successfully. Since the processing time is no longer than 0.05 sec, it is expected that the developed method could be adopted to high speed welding such as laser welding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号