首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用有限元热分析方法,构建宏微运动平台的热-结构耦合分析模型,对宏微运动平台的连接架及柔性铰链平台开展热特性分析。耦合场分析结果发现,相比无温度场载荷条件,连接架及柔性铰链平台的变形量增大。对运动平台的关键部件连接架进行尺寸优化,尺寸优化后的连接架最大变形量减少15.2%,总质量减少12.6%,最大应力减少20.3%。补充了传统的仅考虑结构载荷影响的方法,为运动平台的超精密定位和稳定运行提供更为全面的分析。  相似文献   

2.
围绕微电子精密制造封装装备的高性能要求,在宏微复合定位技术的基础上,提出一种新型宏微复合精密定位平台及其精密定位方法。首先利用ADAMS/view对平台进行动力学分析与仿真,明确弹簧刚度与预紧力因素对系统性能的影响,使得符合封装装备高频往复的工作要求。然后提出宏微复合运动的PID切换控制方法,实现平台的控制系统开发,搭建其宏微复合定位平台,并开展其定位性能的实验。结果表明,在速度为0.25 m/s,加速度为5 g的20 mm运行条件下,平台能够实现40 nm的定位精度且稳定时间小于105 ms。  相似文献   

3.
对高加速度宏微运动平台进行了研究,在分析宏微复合驱动技术的基础上,采用一种新型的宏微驱动方式,研制了基于压电陶瓷的高加速度宏微运动平台。宏运动由音圈电机驱动,可实现高加速度、大行程运动;微运动由安装在音圈电机轴上的压电陶瓷驱动,用以补偿宏动所产生的定位误差,达到高精度的设计目标。在微动过程中,由绝对式直线光栅尺实现闭环位置反馈。根据设计要求,搭建了宏微驱动高加速度高精度定位平台,通过实验验证其性能。实验结果表明,该宏微运动平台加速度大于10g,重复定位精度小于1μm。  相似文献   

4.
针对集成电路制造、超精密检测仪器及微机电系统加工制造等领域对大行程、多自由度、高速及高精度运动平台日益迫切的需求,提出一种新型大行程三自由度宏微运动平台。该平台采用直线电动机与压电陶瓷进行宏微双重驱动,采用直线光栅与平面光栅实现双闭环位置反馈与控制。基于该平台结构设计,确定其位置正解方程与位置逆解方程,并列举算例验证。基于ADAMS软件对平台进行运动仿真,分析不同驱动类型与驱动参数对运动平台位移、速度及加速度的影响。最后,针对宏微双重驱动传动的精度问题进行实验研究。结果表明,该平台运动学方程正确有效,具有较好的动态响应性与运动规划性,且该种驱动传动形式满足大行程、高速及高精度的性能要求。  相似文献   

5.
高速高精密定位平台是微电子制造装备领域的核心部件,决定着微电子产品的性能与质量.近年来,宏微复合定位平台技术得到了快速发展,高速度与高精密度等性能不断提升,然而,运动切换环节的振动问题也日益凸显,成为制约宏微定位平台进一步发展的瓶颈.基于此,首先对当前国内外宏微定位平台及其运动切换环节振动问题的研究现状进行介绍,继而分别介绍与分析了宏微定位平台系统的机构形式、驱动方式、导轨及其他因素对运动切换环节振动问题的影响,最后对目前运动切换减振方法进行概述,重点提出基于压电陶瓷的新型减振方法,以期对未来宏微定位平台运动切换的减振研究提供一定的参考作用.  相似文献   

6.
根据高性能直线电机直接驱动宏动平台和宏/微双重驱动精密定位机构的要求,基于柔性铰链设计微动平台,实现大行程纳米级别的分辨率和定位精度;微动平台采用压电陶瓷驱动,安装于宏动平台上;整个宏/微系统采用精密绝对光栅和精密增量光栅二级位置检测以解决大行程和高分辨在检测上的矛盾问题,以此为位置反馈实现闭环控制。在平台结构设计的基础上建立系统质量刚度动力学模型,分析平台在阻尼垫块不同的情况的稳定性能。  相似文献   

7.
宏/微双驱动平台是一种用于微切削加工的高精度切削平台,其定位精度受多种因素影响。为提高宏/微双驱动定位运动平台的定位精度,提出基于BP神经网络进行宏/微双驱动运动平台定位误差预测的方法。测量运动平台的定位精度,从而建立BP神经网络误差预测模型,并运用该模型对宏/微双驱动运动平台进行定位误差预测试验,最终证明BP神经网络定位误差预测模型精度高、抗变换性能好,适用于对宏/微双驱动运动平台的定位误差进行误差预测及补偿,使得宏/微双驱动平台达到10nm级精度设计要求。  相似文献   

8.
宏微复合平台常应用于大行程运动和高精度定位的场合。基于对宏微复合驱动技术的的分析及研究,提出了一种音圈电机与压电陶瓷复合驱动的宏微复合运动平台结构,其中微运动平台采用压电陶瓷驱动和弹簧预紧,具有结构简单、分辨率高、刚度高和响应速度快等优点。针对微运动平台的主动控制问题,考虑压电陶瓷驱动器驱动电路以及滑块与摩擦复合作用的影响,建立微运动平台动态模型。通过微运动平台动态特性的实验研究,分析滑块与摩擦复合作用对微运动平台平稳性的影响。结果表明,该模型可快速缩短平台到达稳定的时间,满足平台精密定位要求。  相似文献   

9.
刚柔混合宏微机械臂是一类特殊结构机械臂系统,适用于空间大范围运动与精密操作任务。以2个柔性宏机械臂和2个刚性微机械臂构成的平面机械臂为研究对象,对其动力学建模、宏微空间分解、运动误差补偿与控制问题进行了研究,给出了较为详实的仿真实验结果,验证了采用刚柔混合宏微机械臂实现空间轨迹跟踪的可能性。  相似文献   

10.
正随着IC封装不断向高密度、高效率、高精度的方向发展,其封装装备需实现高速高加速(加速度达8~15g)频繁往复运动下的快速精密定位。高动态运动使其在定位过程中的惯性振动难以在短时间内衰减,影响工作效率;而高加减速过程的宏微切换易产生冲击、分叉等非线性问题,影响后续精密操作;在高频高动态精密定位过程,系统则面临时空耦合、信号突变、干扰等问题,影响平台高精度定位。针对这类问题,设计了新型宏微复合运动平台,提出了基于高频瞬态作用的惯性振动快  相似文献   

11.
设计一种超高加速度宏微运动平台,将运动过程分为五个工作状况,针对不同工况中的平台,采用有限元方法,展开静态受力分析,获得相应变形和应力分布云图,对其相关载荷参数影响规律进行探究。进一步通过动态特性分析计算,获得前六阶固有频率和振动模态,其中第一阶固有频率高于超高加速度宏微运动平台驱动频率,避免了系统共振的发生。利用锤击振动测试实验进行验证,结果证明模拟仿真数据的正确性。研究结果对微电子制造产业飞速发展及其设备更新换代具有十分重要的意义。  相似文献   

12.
杨安 《机电工程》2012,29(5):521-524
针对注塑机肘杆式合模机构中模板要满足降低重量,提高强度、刚度及疲劳寿命的设计要求,应用ANSYS及FE-SAFE软件对某型号注塑机前模板进行了拓扑优化,从两个方向入手,即:对现行的结构再进行拓扑优化;回到原始的结构,并对其进行拓扑优化,寻求最合理的设计形式。对优化后的模板进行了应力、变形分析及疲劳分析,并对比了模板优化前后的应力、变形及疲劳情况。研究结果表明,优化后的模板模型质量更小,且最大应力更小、变形更小,具有更好的疲劳性能;通过应用ANSYS及FE-SAFE软件优化,注塑机前模板的强度、刚度、疲劳寿命及可靠度均得到了相应的提高,同时模型的质量减少,能够更加充分和合理地使用材料。  相似文献   

13.
根据桥式放大机构和平行四边形导向机构相结合设计了一种新型的垂直运动精密微定位平台。利用卡式定理推导了微定位平台的最大行程、刚度及放大比,利用拉格朗日方程推导了微定位平台的动力学模型及其固有频率。采用有限元仿真软件分析微定位平台的动静力学特性,并与理论分析结果进行对比,两者结果吻合良好。制造了微定位平台的原型样机,并进行了实验验证,实验结果表明:垂直运动精密微定位平台的行程可达112.9μm,闭环分辨率为10 nm,可以用于显微镜聚焦系统的微调等垂直定位精度较高的场合。  相似文献   

14.
一种宏微双重驱动精密定位机构的建模与控制   总被引:28,自引:18,他引:10  
提出一种宏微双重驱动精密定位机构,采用高性能直线电机直接驱动宏动平台,实现系统大行程微米级精度定位;安装在宏动平台上的压电陶瓷驱动微动平台,实现纳米级的分辨率和定位精度,以高频响动态补偿系统的定位误差;采用精密光栅尺反馈微动平台输出端的位置信号,实现定位机构的全闭环反馈控制。在分别建立宏动、微动、宏微机构模型的基础上,提出复合型宏动控制和模糊自校正PID微动控制的宏微控制策略。实验研究表明:系统的动态和稳态性能良好,该定位机构的最大工作行程100 mm,稳定时间小于40 ms,重复定位精度10 nm。  相似文献   

15.
崔晶  王迪凡 《光学精密工程》2015,23(4):1081-1087
针对音圈电机驱动的X-Y定位平台中稳态误差导致的系统定位精度较低的问题,提出了基于敏感函数逆的前馈补偿控制方法。首先,采用频域辨识方法建立了系统模型,基于终值定理推导出系统扰动和稳态误差的关系,并由此设计了敏感函数的逆模型来补偿扰动对稳态误差的影响,从而提高系统精密定位性能。最后,在搭建的音圈电机驱动X-Y定位平台上进行了不同运动行程的实验研究。实验结果表明:在行程为10μm,最大加速度为6mm/s2的微定位运动条件下,补偿后的定位误差可由2μm降低到0.2μm;在行程为10mm,最大加速度为6m/s2的宏定位运动条件下,定位误差可由2μm降低到0.4μm。实验结果验证了本方法的有效性,为后续高精密伺服系统的研制提供了重要参考和设计依据。  相似文献   

16.
当前宏微双驱动定位进给系统中微驱动平台力学性能差、精度低,且柔性铰链作为微驱动平台关键部分,直接影响着微驱动平台的定位精度等各项性能。为此,采用OptiStruct软件对微驱动定位进给系统的柔性铰链进行结构拓扑优化后,以工程塑料(ABS)为原材料通过3D打印进行加工。利用有限元对整个微动平台系统进行模态分析并通过模态试验进行了验证。最终获得柔性铰链以及整个微动平台的最优结构,在保证结构刚度、精度的同时达到了结构轻量化的目的。  相似文献   

17.
为满足精密定位和微纳制造领域对全柔性并联机构构型设计的需求,基于三平移并联机构原型,采用多目标拓扑优化理论,得到了一种结构配置较佳的新型全柔性并联机构。首先,基于单目标的柔度优化模型和固有频率优化模型,运用线性加权法建立了机构的多目标拓扑优化模型。然后,基于HyperWorks/OptiStruct软件和优化准则算法对机构进行拓扑优化设计,得到了拓扑优化后的新型全柔性并联机构。最后,通过HyperMesh软件对拓扑优化前后的机构进行静力学分析和模态分析,从而验证了多目标拓扑优化设计的有效性。  相似文献   

18.
浸没式光刻机精密运动平台设计   总被引:1,自引:0,他引:1  
针对浸没式光刻机光刻头高速度、高加速度的运动特点,设计了一种短行程、超精密的运动定位平台,以直线交流伺服电机驱动。设计了直线运动平台的机械结构,建立了直线运动平台的数学模型,按部分模型匹配法设计了直线交流伺服电机PID控制器,实现了PID参数自适应的在线调整,进行了多次参数分析和实验验证。实验表明:开发的定位平台,瞬间速度和加速度大,具有理想的动态性能和高稳态精度;控制器的同步控制精度较高,速度同步精度得到了较大提高,可对强机械耦合的多电机实现同步控制,适用于浸没式光刻机等精密仪器领域。  相似文献   

19.
超精密测量定位是实现现代超精密加工的重要环节.以宏微结合式的超精密二维定位平台为基础,组建了基于光谱共焦位移传感器的超精密二维测量定位系统,介绍了该系统的组成与功能实现方法.利用高等级量块对系统进行二维校准,再将该系统应用于二维尺寸的测量,分析了测量误差,并进行了测量不确定度的评定,试验获得该测量系统X、Y方向的测量不确定度分别为89 nm和87 nm.研究表明该超精密二维测量定位系统初步达到了纳米级测量效果.  相似文献   

20.
微进给机构是超精密加工设备中实现精密定位的重要组成部分,由于精密磨削时磨削量数量级的减小,热变形的问题更加突出,成为影响平台定位精度的主要因素.运用I-DEAS软件,针对一种精密磨削用多自由度辅助微进给平台,对其磨削工件时的温度场进行了分析研究,为进一步探索其热变形的规律奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号