首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three‐dimensions. We describe a simple alternative based on spatial transformation of a through‐focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen.  相似文献   

2.
Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function (PSF) and by a refractive‐index mismatch between the sample and immersion liquid, which are difficult to separate. Additionally, accurate calibration of the axial distances in confocal microscopy remains cumbersome, although several high‐end methods exist. In this paper we present two methods to calibrate axial distances in 3D confocal microscopy that are both accurate and easily implemented. With these methods, we measured axial scaling factors as a function of refractive‐index mismatch for high‐aperture confocal microscopy imaging. We found that our scaling factors are almost completely linearly dependent on refractive index and that they were in good agreement with theoretical predictions that take the full vectorial properties of light into account. There was however a strong deviation with the theoretical predictions using (high‐angle) geometrical optics, which predict much lower scaling factors. As an illustration, we measured the PSF of a correctly calibrated point‐scanning confocal microscope and showed that a nearly index‐matched, micron‐sized spherical object is still significantly elongated due to this PSF, which signifies that care has to be taken when determining axial calibration or axial scaling using such particles.  相似文献   

3.
Two‐photon fluorescence microscopy and confocal reflectance microscopy were compared to detect intracellular gold nanorods in rat basophilic leukaemia cells. The two‐photon photoluminescence images of gold nanorods were acquired by an 800 nm fs laser with the power of milliwatts. The advantages of the obtained two‐photon photoluminescence images are high spatial resolution and reduced background. However, a remarkable photothermal effect on cells was seen after 30 times continuous scanning of the femto‐second laser, potentially affecting the subcellular localization pattern of the nanorods. In the case of confocal reflectance microscopy the images of gold nanorods can be obtained with the power of light source as low as microwatts, thus avoiding the photothermal effect, but the resolution of such images is reduced. We have noted that confocal reflectance images of cellular gold nanorods achieved with 50 μW 800 nm fs have a relatively poor resolution, whereas the 50 μW 488 nm CW laser can acquire reasonably satisfactory 3D reflectance images with improved resolution because of its shorter wavelength. Therefore, confocal reflectance microscopy may also be a suitable means to image intracellular gold nanorods with the advantage of reduced photothermal effect.  相似文献   

4.
We propose a novel imaging method that enables the enhancement of three‐dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications.  相似文献   

5.
In widefield fluorescence microscopy, images from all but very flat samples suffer from fluorescence emission from layers above or below the focal plane of the objective lens. Structured illumination microscopy provides an elegant approach to eliminate this unwanted image contribution. To this end a line grid is projected onto the sample and phase images are taken at different positions of the line grid. Using suitable algorithms ‘quasi‐confocal images’ can be derived from a given number of such phase‐images. Here, we present an alternative structured illumination microscopy approach, which employs two‐dimensional patterns instead of a one‐dimensional one. While in one‐dimensional structured illumination microscopy the patterns are shifted orthogonally to the pattern orientation, in our two‐dimensional approach it is shifted at a single, pattern‐dependent angle, yet it already achieves an isotropic power spectral density with this unidirectional shift, which otherwise would require a combination of pattern‐shift and ‐rotation. Moreover, our two‐dimensional approach also yields a better signal‐to‐noise ratio in the evaluated image.  相似文献   

6.
Three‐dimensional (3D) morphometric analysis of cellular and subcellular structures provides an effective method for spatial cell biology. Here, 3D cellular and nuclear morphologies are reconstructed to quantify and compare morphometric differences between normal and apoptotic endothelial cells. Human umbilical vein endothelial cells (HUVECs) are treated with 60 μM H2O2 to get apoptotic cell model and then a series of sectional images are acquired from laser scanning confocal microscopy. The 3D cell model containing plasma membrane and cell nucleus is reconstructed and fused utilizing three sequential softwares or packages (Mimics, Geomagic, and VTK). The results reveal that H2O2 can induce apoptosis effectively by regulating the activity of apoptosis‐related biomolecules, including pro‐apoptotic factors p53 and Bax, and anti‐apoptotic factor Bcl‐2. Compared with the normal HUVECs, the apoptotic cells exhibit significant 3D morphometric parameters (height, volume and nucleus‐to‐cytoplasm ratio) variation. The present research provides a new perspective on comparative quantitative analysis associated with cell apoptosis and points to the value of LSCM as an objective tool for 3D cell reconstruction. Microsc. Res. Tech. 76:1154–1162, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
We propose a structured illumination microscopy method to combine super resolution and optical sectioning in three‐dimensional (3D) samples that allows the use of two‐dimensional (2D) data processing. Indeed, obtaining super‐resolution images of thick samples is a difficult task if low spatial frequencies are present in the in‐focus section of the sample, as these frequencies have to be distinguished from the out‐of‐focus background. A rigorous treatment would require a 3D reconstruction of the whole sample using a 3D point spread function and a 3D stack of structured illumination data. The number of raw images required, 15 per optical section in this case, limits the rate at which high‐resolution images can be obtained. We show that by a succession of two different treatments of structured illumination data we can estimate the contrast of the illumination pattern and remove the out‐of‐focus content from the raw images. After this cleaning step, we can obtain super‐resolution images of optical sections in thick samples using a two‐beam harmonic illumination pattern and a limited number of raw images. This two‐step processing makes it possible to obtain super resolved optical sections in thick samples as fast as if the sample was two‐dimensional.  相似文献   

8.
A difference in refractive index (n) between immersion medium and specimen results in increasing loss of intensity and resolution with increasing focal depth and in an incorrect axial scaling in images of a confocal microscope. Axial thickness measurements of an object on such images are therefore not exact. The present paper describes a simple procedure to determine the correct axial thickness of an object with confocal fluorescence microscopy. We study this procedure for a specimen that has a higher refractive index than the immersion medium and with a thickness up to 100 µm. The measuring method was experimentally tested by comparing the thickness of polymer layers measured on axial images of a confocal microscope in case of a water–polymer mismatch to reference values obtained from an independent technique, i.e. scanning electron microscopy. The case when the specimen has a lower refractive index than the immersion medium is also shown by way of illustration. Measured thickness data of a water layer and an oil layer with the same actual thickness were obtained using an oil-immersion objective lens with confocal microscopy. Good agreement between theory and experiment was found in both cases, consolidating our method.  相似文献   

9.
Confocal microscopy is high precision and widely used method for topography measurement. The surface height information is obtained by peak extraction of the axial response signal (ARS) which axial tomography of the surface is required. Therefore, when scanning large-diameter surfaces with a confocal coordinate measuring system (CCMS), the relative horizontal scanning trajectory (RHST) between the confocal sensor and surface is repeated and time-consuming step motion, which greatly increases the measurement time. To improve the scanning measurement efficiency of CCMS, we propose a new location tracking scanning (LTS) method based on multi-focus. In the LTS method, the RHST is a continuous linear motion during the process of axial tomography, and the horizontal motional surface is located and tracked through a series of focuses to restore the ARS. A generatrix profile of a spherical surface is measured to verify the effectiveness of the proposed method, and the results show that the scanning measurement time can be reduced by more than 90% without loss of accuracy of the profile measurement.  相似文献   

10.
Confocal microscopy is a suitable method for measurements and visualization of skeletal muscle fibres and the neighbouring capillaries. When using 3D images of thick sections the tissue deformation effects should be avoided. We studied the deformation in thick sections of the rat skeletal muscle from complete stacks of images captured with confocal microscope. We measured the apparent thickness of the stacks and compared it to the slice thickness deduced from calibrated microtome settings. The ratio of both values yielded the axial scaling factor for every image stack. Careful sample preparation and treatment of the tissue cryosections with cold Ringer solution minimize the tissue deformation. We conclude that rescaling by the inverse of the axial scaling factor of the stack of optical slices in the direction of the microscope optical axis satisfactorily corrects the axial deformation of skeletal muscle samples.  相似文献   

11.
Precise measurement of rapid volume changes of substrate‐adherent cells is essential to understand many aspects of cell physiology, yet techniques to evaluate volume changes with sufficient precision and high temporal resolution are limited. Here, we describe a novel imaging method that surveys the rapid morphology modifications of living, substrate‐adherent cells based on phase‐contrast, digital video microscopy. Cells grown on a glass substrate are mounted in a custom‐designed, side‐viewing chamber and subjected to hypotonic swelling. Side‐view images of the rapidly swelling cell, and at the end of the assay, an image of the same cell viewed from a perpendicular direction through the substrate, are acquired. Based on these images, off‐line reconstruction of 3D cell morphology is performed, which precisely measures cell volume, height and surface at different points during cell volume changes. Volume evaluations are comparable to those obtained by confocal laser scanning microscopy (ΔVolume ≤ 14%), but our method has superior temporal resolution limited only by the time of single‐image acquisition, typically ~100 ms. The advantages of using standard phase‐contrast microscopy without the need for cell staining or intense illumination to monitor cell volume make this system a promising new tool to investigate the fundamentals of cell volume physiology.  相似文献   

12.
The stretch zone width (SZW) data for 15‐5PH steel CTOD specimens fractured at ?150°C to + 23°C temperature were measured based on focused images and 3D maps obtained by extended depth‐of‐field reconstruction from light microscopy (LM) image stacks. This LM‐based method, with a larger lateral resolution, seems to be as effective for quantitative analysis of SZW as scanning electron microscopy (SEM) or confocal scanning laser microscopy (CSLM), permitting to clearly identify stretch zone boundaries. Despite the worst sharpness of focused images, a robust linear correlation was established to fracture toughness (KC) and SZW data for the 15‐5PH steel tested specimens, measured at their center region. The method is an alternative to evaluate the boundaries of stretched zones, at a lower cost of implementation and training, since topographic data from elevation maps can be associated with reconstructed image, which summarizes the original contrast and brightness information. Finally, the extended depth‐of‐field method is presented here as a valuable tool for failure analysis, as a cheaper alternative to investigate rough surfaces or fracture, compared to scanning electron or confocal light microscopes. Microsc. Res. Tech. 75:1155–1158, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
In common light microscopy, observation of samples is only possible from one perspective. However, especially for larger three‐dimensional specimens observation from different views is desirable. Therefore, we are presenting a sample holder permitting rotation of the specimen around an axis perpendicular to the light path of the microscope. Thus, images can be put into a defined multidimensional context, enabling reliable three‐dimensional reconstructions. The device can be easily adapted to a great variety of common light microscopes and is suitable for various applications in science, education and industry, where the observation of three‐dimensional specimens is essential. Fluorescence z‐projection images of copepods and ixodidae ticks at different rotation angles obtained by confocal laser scanning microscopy and light sheet fluorescence microscopy are reported as representative results.  相似文献   

14.
Three-dimensional confocal imaging of polymer samples was achieved by the use of two-photon excited fluorescence in both positive and negative contrast modes. The fluorophore was a new and highly efficient two-photon induced upconverter, resulting in improved signal strength at low pumping power. Because of the relatively long wavelength of the excitation source (798 nm from a mode-locked Ti:Sap-phire laser), this technique shows a larger penetration depth into the samples than provided by conventional single-photon fluorescence confocal microscopy. Single-photon and two-photon images of the same area of each sample show significant differences. The results suggest the possibility of using two-photon confocal microscopy, in conjunction with highly efficient fluorophores, as a tool to study the surface, interface, and fracture in material science applications.  相似文献   

15.
Differential interference contrast (DIC) is frequently used in conventional 2D biological microscopy. Our recent investigations into producing a 3D DIC microscope (in both conventional and confocal modes) have uncovered a fundamental difficulty: namely that the phase gradient images of DIC microscopy cannot be visualized using standard digital image processing and reconstruction techniques, as commonly used elsewhere in microscopy. We discuss two approaches to the problem of preparing gradient images for 3D visualization: integration and the Hilbert transform. After applying the Hilbert transform, the dataset can then be visualized in 3D using standard techniques. We find that the Hilbert transform provides a rapid qualitative pre-processing technique for 3D visualization for a wide range of biological specimens in DIC microscopy, including chromosomes, which we use in this study.  相似文献   

16.
We report a preliminary investigation of spatial inhomogeneities in an InGaN epilayer using scanning confocal microscopy as the investigative tool. The Daresbury confocal microscope SYCLOPS provides simultaneous high quality reflection and fluorescence images of InGaN sample areas up to 500 μm square, even at room temperature. Sample cooling increases the brightness and quality of the fluorescence image, as expected. Spectral selection using interference filters permits identification of features close to sample edges resulting from the nitridation of indium droplets. The unexpected non-coincidence of fluorescence and reflection features below 10 μm in size is tentatively attributed to the differing absorption strengths of different crystallites.  相似文献   

17.
Scanning near‐field optical microscopy images of metal nanostructures taken with the tetrahedral tip (T‐tip) show a distribution of dark and bright spots at distances in the order of 25–50 nm. The images are interpreted as photonic nanopatterns defined as calculated scanning near‐field optical microscopy images using a dipole serving as a light‐emitting scanning near‐field optical microscopy probe. Changing from a positive to a negative value of the dielectric function of a sample leads to the partition of one spot into several spots in the photonic nanopatterns, indicating the excitation of surface plasmons of a wavelength in the order of 50–100 nm in metal nanostructures.  相似文献   

18.
The distribution of looping patterns of laminin in uveal melanomas and other tumours has been associated with adverse outcome. Moreover, these patterns are generated by highly invasive tumour cells through the process of vasculogenic mimicry and are not therefore blood vessels. Nevertheless, these extravascular matrix patterns conduct plasma. The three‐dimensional (3D) configuration of these laminin‐rich patterns compared with blood vessels has been the subject of speculation and intensive investigation. We have developed a method for the 3D reconstruction of volume for these extravascular matrix proteins from serial paraffin sections cut at 4 µm thicknesses and stained with a fluorescently labelled antibody to laminin ( Maniotis et al., 2002 ). Each section was examined via confocal laser‐scanning focal microscopy (CLSM) and 13 images were recorded in the Z‐dimension for each slide. The input CLSM imagery is composed of a set of 3D subvolumes (stacks of 2D images) acquired at multiple confocal depths, from a sequence of consecutive slides. Steps for automated reconstruction included (1) unsupervised methods for selecting an image frame from a subvolume based on entropy and contrast criteria, (2) a fully automated registration technique for image alignment and (3) an improved histogram equalization method that compensates for spatially varying image intensities in CLSM imagery due to photo‐bleaching. We compared image alignment accuracy of a fully automated method with registration accuracy achieved by human subjects using a manual method. Automated 3D volume reconstruction was found to provide significant improvement in accuracy, consistency of results and performance time for CLSM images acquired from serial paraffin sections.  相似文献   

19.
We compare the axial sectioning capability of multifocal confocal and multifocal multiphoton microscopy in theory and in experiment, with particular emphasis on the background arising from the cross‐talk between adjacent imaging channels. We demonstrate that a time‐multiplexed non‐linear excitation microscope exhibits significantly less background and therefore a superior axial resolution as compared to a multifocal single‐photon confocal system. The background becomes irrelevant for thin (< 15 µm) and sparse fluorescent samples, in which case the confocal parallelized system exhibits similar or slightly better sectioning behaviour due to its shorter excitation wavelength. Theoretical and experimental axial responses of practically implemented microscopes are given.  相似文献   

20.
The geometrical structure of fibrous extracellular matrix (ECM) impacts on its biological function. In this report, we demonstrate a new algorithm designed to extract quantitative structural information about individual collagen fibres (orientation, length and diameter) from 3D backscattered‐light confocal images of collagen gels. The computed quantitative data allowed us to create surface‐rendered 3D images of the investigated sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号