首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses how to improve the tracking precision of a laser beam positioning system by using a new sliding model tracking strategy. A continuous strategy of integral sliding mode control is proposed in order to achieve high-accuracy and high robustness of position tracking control. Modelling deviation and unmeasurable external disturbance is compen-sated for by an integral action term. This scheme can solve the chattering problem without loss of robustness and controaccuracy. The simulation and experimental results show that a laser beam position control system with the integrated sliding mode control (ISMC) has higher robustness, higher global stability, higher tracking precision, and speed than a traditional controller.  相似文献   

2.
郭宇飞  侯保林 《中国机械工程》2014,25(15):2076-2080
研究了车体振动影响下某自行火炮的弹药传输机械臂的动力学与位置控制。采用第二类拉格朗日法建立了弹药传输机械臂的动力学方程,并将方程中的车体振动项提取出来看作不确定外部扰动力。在此基础上,基于一种隐式Lyapunov函数设计了系统的位置控制器(控制器的增益是系统状态变量的可微函数)。基于牛顿迭代法与龙格库塔法求解了系统的动力学方程。结果显示,所设计的控制器有效抑制了车体振动的影响,实现了弹丸传输机械臂位置的精确控制。  相似文献   

3.
Wall-following control problem for a mobile robot is to move it along a wall at a constant speed and keep a specified distance to the wall.This paper proposes wall-following controllers based on Lyapunov function candidate for a two-wheeled mobile robot (MR) to follow an unknown wall. The mobile robot is considered in terms of kinematic model in Cartesian coordinate system. Two wall-following feedback controllers are designed: full state feedback controller and observer-based controller. To design the former controller, the errors of distance and orientation of the mobile robot to the wall are defined, and the feedback controller based on Lyapunov function candidate is designed to guarantee that the errors converge to zero asymptotically. The latter controller is designed based on Busawon’s observer as only the distance error is measured. Additionally, the simulation and experimental results are included to illustrate the effectiveness of the proposed controllers.  相似文献   

4.
This paper presents a novel neural network adaptive sliding mode control (NNASMC) method to design the dynamic control system for an omnidirectional vehicle. The omnidirectional vehicle is equipped with four Mecanum wheels that are actuated by separate motors, and thus has the omnidirectional mobility and excellent athletic ability in a narrow space. Considering various uncertainties and unknown external disturbances, kinematic and dynamic models of the omnidirectional vehicle are established. The inner-loop controller is designed based the sliding mode control (SMC) method, while the out-loop controller uses the proportion integral derivative (PID) method. In order to achieve the stable and robust performance, the artificial neural network (ANN) based adaptive law is introduced to model and estimated the various uncertainties disturbances. Stability and robustness of the proposed control method are analyzed using the Lyapunov theory. The performance of the proposed NNASMC method is verified and compared with the classical PID controller and SMC controller through both the computer simulation and the platform experiment. Results validate the effectiveness and robustness of the NNASMC method in presence of uncertainties and unknown external disturbances.  相似文献   

5.
This paper presents an adaptive nonlinear predictive control design strategy for a kind of nonlinear systems with output feedback coupling and results in the improvement of regulatory capacity for reference tracking, robustness and disturbance rejection. The nonlinear system is first transformed into an equal time-variant system by analyzing the nonlinear part. Then an extended state space predictive controller with a similar structure of a PI optimal regulator and with P-step setpoint feedforward control is designed. Because changes of the system state variables are considered in the objective function, the control performance is superior to conventional state space predictive control designs which only consider the predicted output errors. The proposed method is tested and compared with latest methods in literature. Tracking performance, robustness and disturbance rejection are improved.  相似文献   

6.
This paper proposes a new compound fractional order integral terminal sliding mode control (FOITSMC) and proportional-derivative control (PD-FOITSMC) for the control of a MEMS gyroscope. In order to improve the robustness of the conventional integral terminal sliding mode control (ITSMC), a fractional integral terminal sliding mode surface is applied. The chattering problem in FOITSMC, which is usually generated by the excitation of fast un-modelled dynamic is the main drawback. A PD controller is employed in order to eliminate chattering phenomenon. The stability of the PD-FOITSMC is proved by Lyapunov theory. The performance of the proposed control method is compared with two other controllers such as ITSMC and FOITSMC. Numerical simulations clearly verified the effectiveness of the proposed control approach.  相似文献   

7.
In this paper, a miniature methanol fuel processor and its controller design is introduced for onboard hydrogen production. The hydrogen is generated via autothermal reforming of methanol. The control scheme consists of a hydrogen flow rate controller and a reforming temperature controller. To deal with uncertain system dynamics and external disturbance, an adaptive sliding mode control algorithm is adopted as the hydrogen flow rate controller for regulating hydrogen flow rate by manipulating methanol flow rate. Additionally, a high-gain observer is implemented to estimate the unmeasurable system state. The stability of closed-loop system is guaranteed by standard Lyapunov analysis. Furthermore, a variable ratio control law is employed as the reforming temperature controller to achieve steady reforming temperature by adjusting the reforming air flow rate. Finally, the effectiveness of the entire system is testified by experimental means.  相似文献   

8.
This paper presents a new robust control based on finite-time Lyapunov stability controller and proved with backstepping method for the position and the attitude of a small rotorcraft unmanned aerial vehicle subjected to bounded uncertainties and disturbances. The dynamical motion equations are obtained by the Newton–Euler formalism. The proposed controller combines the advantage of the backstepping approach with finite-time convergence techniques to generate a control laws to guarantee the faster convergence of the state variables to their desired values in short time and compensate for the bounded disturbances. A formal proof of the closed-loop stability and finite-time convergence of tracking errors is derived using the Lyapunov function technique. Simulation results are presented to corroborate the effectiveness and the robustness of the proposed control method.  相似文献   

9.
挖掘机器人伺服系统存在高度非线性、参数不确定和未建模动态等诸多不利因素,提出了一种结合径向基函数(RBF)神经网络的非线性滑模控制器,以提高控制精度和鲁棒性。首先,建立了单联伺服系统的数学模型;其次,采用RBF神经网络对系统的不利因素进行逼近,提出积分滑模面进一步减小稳态误差,同时减少对伺服系统参数的依赖,在此基础上,设计了基于RBF神经网络的滑模控制器(SMC-RBF),利用Lyapunov理论证明了系统的渐近稳定性;最后,通过不同的参考信号和整平实验验证了控制器的优越性。仿真结果表明,SMC-RBF控制器响应快,跟踪精度高且鲁棒性强,与PID控制器相比正弦轨迹跟踪精度提高了46%。整平实验结果表明,铲斗末端轨迹跟踪精度提高了52%。  相似文献   

10.
Optimal second order sliding mode control for nonlinear uncertain systems   总被引:1,自引:0,他引:1  
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.  相似文献   

11.
The present paper concerns the induction of stable sustained oscillation in feedback-linearizable single-input affine nonlinear dynamical systems via continuous-time state feedback control. The proposed application-oriented control approach is based on the conception of a state feedback controller that ensures the tracking of a limit cycle characterized in terms of the feedback-linearized system. Boundedness and convergence of the closed-loop trajectories are established following the Lyapunov theoretical framework and applying LaSalle׳s stability principle. The proposed approach is demonstrated with computer-simulated control experiments, showing that it ensures the convergence of the state trajectories of the controlled system to a designed limit cycle and that the methodology can, in principle, be applied to any single input feedback linearizable system.  相似文献   

12.
研究了岸边集装箱起重机的防摇及定位控制.在对系统进行无源性分析的基础上,构造了控制Lya-punov函数,得到系统镇定控制律.理论分析和数值仿真算例表明,该控制方法对于岸桥防摇和定位控制有着较快的收敛速度和较强的鲁棒性.  相似文献   

13.
The disturbance suppression is one of the most common control problems in electro-hydraulic systems. especially largely an unknown disturbance often obviously degrades the dynamic performance by biasing the desired actuator outputs (e.g., load forces or torques). In order to reject the dynamic disturbances in some multi-degree-of-freedom manipulators driven by electro-hydraulic actuators, this paper proposes a state feedback control of the cascade electro-hydraulic system based on a coupled disturbance observer with backstepping. The coupled disturbance observer is designed to estimate both the independent element and the coupled element of the external loads on each electro-hydraulic actuator. The cascade controller has the ability to compensate for the disturbance estimating, as well as guarantees the system state error convergence to a prescribed steady state level. The effectiveness of the proposed controller for the suppression of largely unknown disturbances has been demonstrated by comparative study, which implies the proposed approach can achieve better dynamic performance on the motion control of Two-Degree-of-Freedom robotic arm.  相似文献   

14.
This paper presents a robust adaptive integral backstepping control strategy with friction compensation for realizing accurate and stable control of opto-electronic tracking system in the presence of nonlinear friction and external disturbance. With the help of integral control term to decrease the steady-state error of the system and combining robust adaptive control approach with the backstepping design method, a novel control method is constructed. Nonlinear modified LuGre observer is designed to estimate friction behavior. Robust adaptive integral backstepping control strategy is developed to compensate the changes in friction behavior and external disturbance of the servo system. The stability of the opto-electronic tracking system is proved by Lyapunov criterion. The performance of robust adaptive integral backstepping controller is verified by the opto-electronic tracking system with modified LuGre model in simulation and practical experiments. Compared to the adaptive integral backstepping sliding mode control method, the root mean square of angle error is reduced by 26.6% when the proposed control method is used. The experiment results demonstrate the effectiveness and robustness of the proposed strategy.  相似文献   

15.
This paper investigates stability analysis and stabilization for networked control systems. By a refined delay decomposition approach, slightly different Lyapunov–Krasovskii functionals (LKFs) with quadruple-integral terms and augmented vectors containing triple-integral forms of state are constructed. New integral inequalities are proposed to estimate the cross terms from derivatives of the LKFs, which can be proved to offer tighter bounds than what the Jensen one produces theoretically. Moreover, the non-strictly proper rational functions in deriving process are fully handled via reciprocally convex approach. A state feedback controller design approach is also developed. Numerical examples and applications to practical power and oscillator systems demonstrate the superiority of the proposed criteria in conservatism reduction compared to some existing ones.  相似文献   

16.
Eker I 《ISA transactions》2006,45(1):109-118
In this study, a sliding mode control system with a proportional+integral+derivative (PID) sliding surface is adopted to control the speed of an electromechanical plant. A robust sliding mode controller is derived so that the actual trajectory tracks the desired trajectory despite uncertainty, nonlinear dynamics, and external disturbances. The proposed sliding mode controller is chosen to ensure the stability of overall dynamics during the reaching phase and sliding phase. The stability of the system is guaranteed in the sense of the Lyapunov stability theorem. The chattering problem is overcome using a hyperbolic function for the sliding surface. Experimental results that are compared with the results of conventional PID verify that the proposed sliding mode controller can achieve favorable tracking performance, and it is robust with regard to uncertainties and disturbances.  相似文献   

17.
This work proposes a robust tracking controller for a helicopter laboratory setup known as the twin rotor MIMO system (TRMS) using an integral sliding mode controller. To eliminate the discontinuity in the control signal, the controller is augmented by a sliding mode disturbance observer. The actuator dynamics is handled using a backstepping approach which is applicable due to the continuous chattering-free nature of the command signals generated using the disturbance observer based controller. To avoid the complexity of analytically differentiating the command signals, a first order sliding mode differentiator is used. Stability analysis of the closed loop system and the ultimate boundedness of the tracking error is proved using Lyapunov stability arguments. The proposed controller is validated by several simulation studies and is compared to other schemes in the literature. Experimental results using a hardware-in-the-loop system validate the robustness and effectiveness of the proposed controller.  相似文献   

18.
Abstract

In the polymerase chain reaction (PCR), the reference temperature profiles of thermal cycling must be tracked rapidly and precisely so as to amplify DNA in samples, strictly following the exponential function of 2n (n: thermal cycles) as quickly as possible. For this purpose, a model based hybrid controller to follow up setpoint changes is developed which is easily implemented with a microcomputer ADuC834 for its simple configuration and low cost of computation. The hybrid control strategy combines feedforward, feedback, and Bang‐Bang actions to achieve better setpoint response and steady state behavior. Based on the steady state model of the thermocycler, the feedforward action serves as the model predictive control for each setpoint, while the feedback controller is used as the local control action to accelerate ramp rates and reduce the tracking errors. The model of the thermocycler is identified with step response data at different operation regions. Experimental results demonstrate that, besides the improvement of the tracking accuracy, both the rise time and the decay time of each thermal cycle have been reduced significantly with the hybrid control strategy, compared with the conventional PID. Therefore, improved efficiency and accuracy of the polymerase chain reaction is achieved.  相似文献   

19.
龙门移动式数控机床横梁磁悬浮控制系统研究   总被引:2,自引:1,他引:1  
针对龙门移动式数控机床中的移动横梁,提出了采用磁悬浮技术,实现无摩擦驱动的新型控制方案。首先,建立了横梁磁悬浮系统的数学模型,利用反馈线性化方法,将非线性模型转化为线性模型,再采用PI状态反馈设计的方法,设计一个悬浮控制器。该反馈线性化是一种全局线性化的方法,优于传统的局部近似线性化的方法。仿真结果表明,该悬浮控制器可以保证全局稳定,使系统具有良好的鲁棒性。  相似文献   

20.
《ISA transactions》2014,53(6):1807-1815
In this paper an optimal second order sliding mode controller (OSOSMC) is proposed to track a linear uncertain system. The optimal controller based on the linear quadratic regulator method is designed for the nominal system. An integral sliding mode controller is combined with the optimal controller to ensure robustness of the linear system which is affected by parametric uncertainties and external disturbances. To achieve finite time convergence of the sliding mode, a nonsingular terminal sliding surface is added with the integral sliding surface giving rise to a second order sliding mode controller. The main advantage of the proposed OSOSMC is that the control input is substantially reduced and it becomes chattering free. Simulation results confirm superiority of the proposed OSOSMC over some existing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号