首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper presents a comprehensive mathematical model for analysis of the geometries of conical, hyperboloidal, and ellipsoidal drills. The proposed method includes three particular features. The first is that a rotational disk-type abrasive wheel is modeled by revolution geometry, thus allowing for the normal and tangent vectors of an abrasive wheel to be obtained explicitly. Consequently, the tangent and normal vectors along the cutting edges and chisel edges of the produced drill can be obtained. The second feature is the ability of the model to determine and express drill geometries and characteristics (semi-point angle, tool cutting edge inclination, chisel angle, normal rake angle and normal clearance angle) according to all current international standards. Thirdly, the drill’s working geometries are investigated by taking the effect of feed motion into consideration. We found that cutting edge geometry can be studied without significant error even though we neglect the effect of feed. The chisel edge working geometry shows greater variation than tool geometry. Consequently, the effect of feed must be taken into consideration when studying chisel edge action during drilling operation.  相似文献   

2.
Drilling modelling is a complex task and has been extensively studied from an experimental viewpoint. However, only few studies have been done on the analytical modelling of this machining operation. The geometry of a drill and the kinematics of drilling are such that tool angles as well as the cutting conditions undergo great variations along the cutting edges. The calculation of the forces in drilling thus requires a cutting model covering the whole range of these variations. Moreover, on the chisel area, the cutting speed and the angles are such that the phenomena cannot be regarded as cutting. In this case, the material is plastically deformed when passing by tool edge, just as in indentation. In this study, we propose a semi-analytical model that allows determining forces on the tool, as well as heat fluxes and temperatures along the edges of the drill. In this model, the main cutting edge and the chisel edge are considered. It also takes into account the elastic relaxation on the clearance face with edge acuity, as well as a proper modelling of the phenomena occurring at chisel edge in relation with its geometry and the kinetics of a drilling operation.  相似文献   

3.
The applications of titanium alloys are increasingly common at marine, aerospace, bio-medical and precision engineering due to its high strength to weight ratio and high temperature-withstanding properties. However, whilst machining the titanium alloys using the solid carbide tools, even with application of high pressure coolant, reduced tool life was widely reported. The generation of high temperatures at the tool–work interface causes adhesion of work material on the cutting edges, and hence, shorter tool life was reported. In order to reduce the high tool–work interface temperature-positive rake angle, higher primary relief and higher secondary relief were configured on the ball nose endmill cutting edges. Despite of careful consideration of tool geometry, after an initial working period, the growth of flank wear accelerates the high cutting forces followed by work material adhesion on the cutting edges. Hence, it is important to blend the strength, sharpness, geometry and surface integrity on the cutting edges so that the ball nose endmill would exhibit an extended tool life. This paper illustrates the effect of ball nose endmill geometry on high speed machining of Ti6Al4V. Three different ball nose endmill geometries were configured, and high speed machining experiments were conducted to study the influence of cutting tool geometry on the metal cutting mechanism of Ti-6Al-4V alloy. The high speed machining results predominantly emphasize the significance of cutting edge features such as K-land, rake angle and cutting edge radius. The ball nose endmills featured with a short negative rake angle of value ?5° for 0.05~0.06 mm, i.e. K-land followed by positive rake angle of value 8°, has produced lower cutting forces signatures for Ti-6Al-4V alloy.  相似文献   

4.

The abrasive reinforcement present in ‘Metal matrix composites’ (MMCs) is responsible for numerous machining challenges for the research fraternity. The increase in tool wear, burr formation, surface roughness, and increase in cutting forces are few of such machining challenges during the drilling of MMCs. The present research investigation explores the effect of change in drill point geometry on the drilling Quality characteristics (QCs) of the drilled hole wall. The drilling QCs under investigation are, Specific cutting pressure (SCP) and Surface roughness (SR) of the drilled hole wall. The levels of the input process parameters for optimum values of the output responses were established by Taguchi’s methodology. SEM images and contour plots of drilled hole wall have been used to qualitatively explain the drilling behavior of MMCs. The chip formation mechanism observed during drilling establishes the cutting behavior of the different cutting edges of the modified drill point geometry. It has been observed that the single conical chips were produced by primary cutting edge and single ring type chips were produced by secondary cutting edge. The step diameter is the main factor which influences the SCP followed by the feed and point angle. The surface roughness of the drilled hole wall has been governed by the cutting speed, feed and step diameter. Burnishing and honing effect were observed on the drilled hole wall surface because of entrapped free SiC particles using SEM.

  相似文献   

5.
切削力预测是制定与优化加工工艺的重要环节。针对曲线端铣加工过程,提出一种基于斜角切削的切削力建模方法。将刀具沿轴向微分,以曲线微分几何计算微元刃上的工作基面。在微元刃的工作法平面参考系中,应用最小能量原理,构建微元刃中力矢量、速度矢量、流屑角、法向摩擦角、法向剪切角及剪应力等切削参数之间的约束。以单齿直线铣削试验对切削参数进行标定,其中法向摩擦角、法向剪切角及剪应力等可表示为瞬时未变形切屑厚度的函数。选取高强度钢PCrNi3MoVA试件,分别进行圆弧和Bézier曲线端铣加工试验。试验结果表明,曲线端铣时切削力的变化与瞬时进给方向和曲线曲率相关。切削力预测值的幅值大小和变化趋势与试验值一致,验证了该切削力建模方法的有效性。  相似文献   

6.
针对碳纤维复合材料(CFRP)与钛合金夹层结构制孔过程中加工质量、制孔效率与钻头寿命低等问题,以钻头的横刃结构为主要研究对象设计试验方案,对钻头横刃结构进行优化,以提高加工质量、制孔效率与钻头寿命。结果表明:优化后的横刃结构加工性能优于普通"X"形钻头横刃结构,不论是碳纤维复合材料部位还是钛合金部位轴向切削力明显减小。  相似文献   

7.
麻花钻是实现孔加工的重要工具,然而切削刃口的快速磨损是制约钻孔质量和钻头寿命的重要因素。基于产品抽样钻孔试验与正交试验,本文对高速钢麻花钻的磨损、破损等失效形式进行了综合分析,探讨了以钻孔直径为评价指标时的孔加工数量与孔径的关系,并对麻花钻磨损的关键影响因素进行了正交试验研究。结果表明,麻花钻磨损与破损形式主要有主切削刃前刀面与后刀面磨损、横刃磨损、刃带磨损、外圆转角磨损、崩刃等;切削速度对麻花钻磨损影响最大、进给量次之、孔深影响最小;此外,随着加工孔数量的增加,孔径呈减小趋势。  相似文献   

8.
To investigate the influence of the geometric structure of coated cemented carbide twist drills on the drill tool life, drilling experiments of 42CrMo steel were carried out at various cutting parameters. The geometric structure parameters of the specially manufactured drill bits were designed by the multifactor orthogonal experiment method. The effects of cutting edge preparation, drill point geometry, and flute geometry on the tool wear were investigated by the range analysis and variance analysis. And their effects on chip pattern were also studied. Then the influence of cutting parameters on the tool life was investigated. Based on these investigations and extending the tool life, the optimized geometric structure was the honed cutting edge with a radius of 0.06 mm and conventional conical flank, and the corresponding cutting parameters were 80 m/min and 0.18 mm/rev. At last, the tool wear characteristics were discussed and the main wear mechanisms were abrasive wear, adhesive wear, coating exfoliation, and tipping.  相似文献   

9.
微细钻头的几何结构是影响刀具钻削性能和微孔加工质量的关键因素。非共轴螺旋面钻尖由连续的螺旋后刀面组成,相比平面钻尖能有效的提高刀具的刃磨效率及其钻削性能。针对非共轴螺旋面钻尖,推导后刀面形成过程中螺旋运动发生线的位置方程,建立了基于砂轮和钻头接触线的后刀面数学模型。根据六轴数控工具磨床的运动原理,提出非共轴螺旋后刀面五轴联动刃磨方法。分析砂轮与螺旋槽之间的相对运动关系,提出微细钻头螺旋槽的数控加工方法。进行非共轴螺旋后刀面微钻的刃磨试验,验证了该刃磨方法的可行性。进而采用制备出的具有相同几何结构参数的平面、锥面和非共轴螺旋面微细钻头进行不锈钢钻削试验,结果表明非共轴螺旋面和锥面微钻的钻削力、后刀面磨损明显小于平面微钻,并且非共轴螺旋后刀面微钻的横刃磨损程度小于平面和锥面微钻。研究证实了所提出的五轴联动刃磨方法可以有效地制备出较高钻削性能的非共轴螺旋后刀面微细钻头。  相似文献   

10.
In this study, the cutting characteristics of a drill reamer, which has conventional twist drill cutting edges appended for reaming, were investigated. A drill reamer has three types of cutting edges, whose roles are drilling, semi-finishing, and finishing. The cutting characteristics of a conventional twist drill were compared to those of the drill reamer. The cutting characteristics were evaluated using the thrust force, cutting torque, surface roughness, wear behavior of the cutting edges, and cutting edge temperature. The study used a workpiece made of carbon steel. The temperature of the cutting edge for reaming reached a maximum value of approximately 420°C, even though the depth of the cut was very small. The inner surface roughness with the drill reamer was superior to that with the conventional drill, even under dry and low-speed cutting conditions. The abrasive wear observed on the margin face of the cutting edge used for reaming.  相似文献   

11.
The carbide drill is an important hole-machining tool. Modern processing solutions set higher requirements for the accuracy and efficiency of carbide drill manufacturing. This paper presents a detailed study of mathematical models of the spiral groove, conical flank, and cutter clearance and proposes three practical and reliable grinding methods using only one standard straight wheel. The spiral groove is ground by controlling three crucial structure parameters: the spiral angle, core diameter, and rake angle. The conical flank is ground by controlling the relief angle, chisel edge angle, and apex angle. The cutter clearance is ground by controlling the ridge width and clearance depth. With these schemes, the wheel position parameters can be computed conveniently and quickly using computer programming, overcoming the low calculation accuracy of empirical formulae and thereby enhancing the efficiency. Using the wheel position parameters, the NC codes applicable to five-axis CNC grinders can be obtained. Furthermore, the reliability of the proposed grinding methods can be verified through CAD simulation and practical manufacture on a five-axis CNC grinder.  相似文献   

12.
麻花钻后刀面建模方法的优化   总被引:1,自引:0,他引:1  
在分析和研究麻花钻锥面刃磨法、变导程螺旋面刃磨法及螺旋锥面刃磨法的基础上,提出了横刃及圆柱螺旋线扫掠法,并构建了其数学模型。该方法预先设计横刃,以横刃及螺旋线复合扫掠的方法构建主后刀面。采用该方法得到了麻花钻直线主刀刃和理想的横刃及后角值分布;解决了采用变导程螺旋面刃磨法钻芯强度较弱以及采用锥面刃磨法存在的主后刀面"翘尾"现象;解决了两主后刀面磨削自然形成横刃形状的可控性。  相似文献   

13.
This paper examines experimentally the combined influence of various design and regime parameters in gundrilling on tool life. Cutting speed, feed, approach angles, flank angles and vertical shifts of the outer and inner cutting edges, location of the drill point are included into consideration. It is demonstrated that tool life is a complex function of not only each of the considered parameters alone but also of their combinations. The Hooke and Jeeves method has been used to optimize the geometry of gundrills by the criterion of tool life. It is shown that understanding the most essential system relationships in the drilling process allows the adjusting of the regime and design parameters of gundrilling to achieve not only the maximum tool life, but also chip breakability and highest feed (productivity).  相似文献   

14.
可转位浅孔钻几何角度分析   总被引:2,自引:2,他引:0  
采用向量矩阵法建立了可转位浅孔钻静态几何角度的数学模型 ,使用该模型可计算出钻头切削刃各点的刃倾角、法前角、法后角及主偏角 ,为进一步研究可转位浅孔钻的钻削力、钻削温度、刀片磨损等提供必要的基础数据。  相似文献   

15.
基于锥面刃磨法的刃磨理论大多假设,麻花钻刃磨前后主切削刃在砂轮上的位置保持不变,忽略了磨削余量对刃磨参数的影响.而在实际加工中,即使刃磨参数选择合理,重刃磨的麻花钻后角和横刃斜角均可能不在优化加工参数范围之内.本文给出了考虑磨削余量的锥面方程,推导出后角和横刃斜角的计算公式,分析了磨削余量对后角和横刃斜角的影响,发现磨...  相似文献   

16.
麻花钻磨损特性的研究   总被引:5,自引:1,他引:4  
王西彬  雷红 《工具技术》1999,33(3):11-14
通过对调质合金结构钢的大量钻削试验,研究了麻花钻磨损区的图形特征和磨损机理以及钻头失效与磨损图形参数、钻头切削寿命与钻削速度的关系。结果表明,麻花钻的磨损具有非线性特征,钻头转角和主刀刃及横刃区有两个显著不同的磨损区,随钻削速度的提高,这两个磨损区的特征差异及磨损带宽度之比明显增大。在钻削速度较低、钻头失效时,两个磨损区为较均衡的磨粒磨损和粘结磨损;钻削速度较高时,转角区剧烈的粘结磨损和氧化磨损使钻头加快失效,而主刀刃及横刃上的磨损却很小。受此影响,麻花钻的磨钝标准、耐用度问题较为复杂,钻头的寿命(T)-速度(V)曲线的泰勒特性范围很窄。  相似文献   

17.
朱捷寅 《工具技术》2017,51(9):109-111
横刃位于麻花钻的最前端,担负着孔中心部分的切削工作。分析了高速钢麻花钻的横刃在切削加工中的重要性,并讨论了修磨横刃改善切削加工的利与弊。  相似文献   

18.
In a previous paper it was shown how the wear of the grinding wheel could be characterized by an increase in negative rake angle of the cutting edges in addition to a growth in area of the wear flats on the grits and how in this way the increase in grinding forces with wheel wear could be accounted for. The results for cutting and rubbing forces from the previous paper are used in this paper to determine the heat fluxes needed in calculating temperatures in the contact area between wheel and workpiece. The temperature distributions are obtained by superimposing the distributions in the vicinity of individual cutting edges and wear flats currently engaged with the workpiece upon the temperatures produced by grits which have left the contact area. A random approach, in the sense that the effect of many abrasive grits of varying sizes subjected to different forces and randomly distributed on the wheel is considered, is adopted. Results are presented showing the influence of wheel wear on temperatures.  相似文献   

19.
Micromachining has become a necessary manufacturing process. Micro-milling tool and its evolution play a vital role in the development of micromachining. This study optimizes the grinding process of polycrystalline diamond (PCD) compact for manufacturing PCD micro-tool. The optimization is conducted by using four parameters, i.e., grain size of PCD compact, grain size of abrasive wheel, grinding speed, and feed rate designed by the Taguchi orthogonal array. The study then evaluates two grinding characteristics, i.e., grinding forces and cutting edge radius of the PCD compact. The results of ANOVA show that the most influential parameter on grinding PCD compact is the grain size of the PCD compact, followed by the grain size of the abrasive wheel, feed rate, and grinding speed. As an example, a quadrilateral PCD micro-milling tool with a cutting edge diameter of 80 μm is fabricated by using the optimized parameters.  相似文献   

20.
针对叠层复合材料的微小孔加工,提出阶跃式多元变参数振动钻模型。按照双刃针斜角切削理论和单刃正交切削理论,分别把钻头主切削刃和副刃分解成一系列微小双刃动态斜角切削单元,把横刃分解成一系列微小单刃动态正交切削单元,从而建立了振动钻削叠层复合材料7个区段的动态轴向力和扭矩的理论公式,并以入钻定位误差,孔扩量,出口毛刺高度作为钻削过程质量评价指标进行了试验优化分析,结果表明,阶跃式多元变参数振动钻削显著提高了叠层复合材料的微小孔加工精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号