首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We describe new developments aimed to extend the capabilities and the sensitivity of the (e,2e)(e,3e) multicoincidence spectrometer at Orsay University [Duguet et al., Rev. Sci. Instrum. 69, 3524 (1998)]. The spectrometer has been improved by the addition of a third multiangle detection channel for the fast "scattered" electron. The present system is unique in that it is the only system which combines three toroidal analyzers all equipped with position sensitive detectors, thus allowing the triple coincidence detection of the three electrons present in the final state of an electron impact double ionization process. The setup allows measurement of the angular and energy distributions of the ejected electrons over almost the totality of the collision plane as well as that of the scattered electron over a large range of scattering angles in the forward direction. The resulting gain in sensitivity ( approximately 25) has rendered feasible a whole class of experiments which could not be otherwise envisaged. The setup is described with a special emphasis on the new toroidal analyzer, data acquisition hardware, and data analysis procedures. The performances are illustrated by selected results of (e,2e) and (e,3e) experiments on the rare gases.  相似文献   

2.
In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2egamma,2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of Ekin approximately 25 eV is around 100 ns. The corresponding time- and energy resolution are typically approximately 1 ns and approximately 0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented.  相似文献   

3.
The occurrence of saturation in CR39 solid state nuclear track detectors has been systematically studied as a function of the incident ion (alpha particles and laser-accelerated protons) fluence and the etching time. When overexposed (i.e., for fluences above approximately 10(8) particles/cm(2)) and/or overetched, the CR39 detectors enter a saturated regime where direct track counting is not possible anymore. In this regime, optical measurements of saturated CR39 detectors become unreliable as well, since the optical response of the saturated detectors with respect to the ion fluence is highly nonlinear. This nonlinear optical response is likely due to scattering from the surface of irregular clumping patterns which have a diameter approximately 20 microm, i.e., ten times larger than the diameter of individual tracks. These patterns, which aggregate many individual tracks, are observed to develop in highly saturated regimes. For fluences typical of high energy short pulse laser experiments, saturation occurs, inducing the appearance of artifact ringlike structures. By careful microscopic analysis, these artifact ring patterns can be distinguished from the genuine rings occurring below saturation and characteristic of low energy laser accelerated proton beams.  相似文献   

4.
We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time switched voltages are operated on the particle lenses to enable optimal electric field strengths for velocity map focusing conditions of electrons and ions separately. The position and time sensitive detectors employ microchannel plates (MCPs) in front of delay line detectors. A special effort was made to obtain the time-of-flight (TOF) of the electrons at high temporal resolution using small pore (5 microm) MCPs and implementing fast timing electronics. We measured the TOF distribution of the electrons under our typical coincidence field strengths with a temporal resolution down to sigma=18 ps. We observed that our electron coincidence detector has a timing resolution better than sigma=16 ps, which is mainly determined by the residual transit time spread of the MCPs. The typical electron energy resolution appears to be nearly laser bandwidth limited with a relative resolution of DeltaE(FWHM)/E=3.5% for electrons with kinetic energy near 2 eV. The mass resolution of the ion detector for ions measured in coincidence with electrons is about Deltam(FWHM)/m=14150. The velocity map focusing of our extended source volume of particles, due to the overlap of the molecular beam with the laser beams, results in a parent ion spot on our detector focused down to sigma=115 microm.  相似文献   

5.
R. Autrata  J. Hejna 《Scanning》1991,13(4):275-287
Two simple electron detectors (low and high take-off angles) for low-voltage scanning electron microscopy were built and tested. They contain large area scintillators with an applied high voltage and are able to detect backscattered electrons with high efficiency. These detectors also can record the sum of backscattered and secondary electrons. The primary beam of the microscope is screened from the scintillator high voltage by grids, which also permit switching from the BSE to the (SE + BSE) mode. The circular symmetry of the grids minimizes the influence of applied potentials on the primary beam. The use of the low and high take-off detectors permits the detection of back-scattered electrons emitted from the specimen surface into different ranges of take-off angles.  相似文献   

6.
A new spectrometer is described for measuring the momentum distributions of scattered electrons arising from electron-atom and electron-molecule ionization experiments. It incorporates and builds on elements from a number of previous designs, namely, a source of polarized electrons and two high-efficiency electrostatic electron energy analyzers. The analyzers each comprise a seven-element retarding-electrostatic lens system, four toroidal-sector electrodes, and a fast position-and-time-sensitive two-dimensional delay-line detector. Results are presented for the electron-impact-induced ionization of helium and the elastic scattering of electrons from argon and helium which demonstrate that high levels of momentum resolution and data-collection efficiency are achieved. Problematic aspects regarding variations in collection efficiency over the accepted momentum phase space are addressed and a methodology for their correction presented. Principles behind the present design and previous designs for electrostatic analyzers based around electrodes of toroidal-sector geometry are discussed and a framework is provided for optimizing future devices.  相似文献   

7.
Two silicon photo diode array devices were tested as parallel recording detectors for electron energy loss spectrometry (EELS). The direct bombardment of a Reticon photodiode array detector with high energy electrons (80 keV) causes an irreversible increase in diode dark current. The dark current saturates the detector amplifier after a dose of 10?6 C/diode making it unsuitable for EELS. A scintillator coupled SIT vidicon is sensitive enough to count two high energy electrons with a spatial resolution of 100 μm, corresponding to 5 eV energy resolution with the electron optical system described. The large pixel-to-pixel gain variation inherent in the scintillator and vidicon can be reduced by averaging the spectrum over a large area of the target perpendicular to the dispersion direction. The L-edge of calcium for a 4 × 10?3 weight fraction concentration biological specimen is observable in a 40 s parallel recorded spectrum. The minimum detectable concentration of calcium is estimated tobe ten times better for EELS than EDS X-ray analysis.  相似文献   

8.
X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast Z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a MCP under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured MCP sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.  相似文献   

9.
T Agemura  S Fukuhara  H Todokoro 《Scanning》2001,23(6):403-409
A measurement technique for incident electron current in secondary electron (SE) detectors, especially the Everhart-Thornley (ET) detector, based on signal-to-noise ratio (SNR), which uses the histogram of a digital scanning electron microscope (SEM) image, is described. In this technique, primary electrons are directly incident on the ET detector. This technique for measuring the correlation between incident electron current and SNR is applicable to the other SE detectors. This correlation was applied to estimate the efficiency of the ET detector itself, to evaluate SEM image quality, and to measure the geometric SE collection efficiency and the SE yield. It was found that the geometric SE collection efficiency at each of the upper and lower detectors of a Hitachi S-4500 SEM was greater than 0.78 at all working distances.  相似文献   

10.
A simple compact device for prompt evaluation of the maximum electron energy has been developed. ЦВИД-01-1 and ЦВИД-3 color film indicators were used as detectors of electrons. The results of ARSA accelerator experiments were compared to those obtained using a semicircular magnetic spectrometer. The difference in the measured maximum electron energies was at most 8%.  相似文献   

11.
We analyze the contrast reversal of Kikuchi bands that can be seen in electron backscatter diffraction (EBSD) patterns under specific experimental conditions. The observed effect can be reproduced using dynamical electron diffraction calculations. Two crucial contributions are identified to be at work: First, the incident beam creates a depth distribution of incoherently backscattered electrons which depends on the incidence angle of the beam. Second, the localized inelastic scattering in the outgoing path leads to pronounced anomalous absorption effects for electrons at grazing emission angles, as these electrons have to go through the largest amount of material. We use simple model depth distributions to account for the incident beam effect, and we assume an exit angle dependent effective crystal thickness in the dynamical electron diffraction calculations. Very good agreement is obtained with experimental observations for silicon at 20 keV primary beam energy.  相似文献   

12.
A time-of-flight coincidence detector is demonstrated. This detector is optimized for use in a pseudocontinuous resonance enhanced multiphoton ionization scheme that requires photoelectrons and photoions to be detected in coincidence. The detector utilizes two simultaneously operating charged particle detectors, one for the detection of electrons and the other for the detection of ions. In order to allow for field reversal, the detectors are physically identical, differing only by the value of applied voltages. Particular attention is given to the implementation of a charge-to-voltage transducer that allows for subnanosecond detection of both electrons and ions.  相似文献   

13.
Collection of the secondary electrons in the scanning electron microscope was simulated and the results have been experimentally verified for two types of the objective lens and three detection systems. The aberration coefficients of both objective lenses as well as maximum axial magnetic fields in the specimen region are presented. Compared are a standard side‐attached secondary electron detector, in which only weak electrostatic and nearly no magnetic field influence the signal trajectories in the specimen vicinity, and the side‐attached (lower) and upper detectors in an immersion system with weak electrostatic but strong magnetic field penetrating towards the specimen. The collection efficiency was calculated for all three detection systems and several working distances. The ability of detectors to attract secondary electron trajectories for various initial azimuthal and polar angles was calculated, too. According to expectations, the lower detector of an immersion system collects no secondary electrons I and II emitted from the specimen and only backscattered electrons and secondary electrons III form the final image. The upper detector of the immersion system exhibits nearly 100% collection efficiency decreasing, however, with the working distance, but the topographical contrast is regrettably suppressed in its image. The collection efficiency of the standard detector is low for short working distances but increases with the same, preserving strong topographical contrast.  相似文献   

14.
Experimentally, scintillator detectors used in scanning electron microscopy (SEM) to record backscattered electrons (BSE) show a noticeable difference in detection efficiency in different parts of their active zones due to light losses transport in the optical part of the detector. A model is proposed that calculates the local efficiency of the active parts of scintillator detectors of arbitrary shapes. The results of these calculations for various designs are presented.  相似文献   

15.
A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.  相似文献   

16.
An integrated circuit for reading signals from silicon detectors intended for systems for measuring charges of cosmic particles and nuclei in space-based experiments is described. It contains a 16-channel charge-sensitive amplifier and two additional operational amplifiers produced by the 0.35 μm CMOS process. The power consumption of the charge-sensitive amplifier is ≤1 mW/channel, and the rms deviation of the noise does not exceed 2000 electrons. Circuit designs for separate stages of the integrated circuit and experimental characteristics are given.  相似文献   

17.
The methods for measuring the thickness of dead layers in Si(Li) and HPGe detectors using radioactive sources of electrons, γ rays, and α particles are proposed. Following the developed procedure, it is possible to determine the thickness of these layers with an error of ~1%.  相似文献   

18.
The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.  相似文献   

19.
J. Zach  H. Rose 《Scanning》1986,8(6):285-293
A new detection method is proposed allowing an efficient extraction of the secondary electrons without affecting the scanning spot of the primary beam. The suggested detector arrangements can be regarded as generalized Wien filters whose electric and magnetic fields do not affect the primary electrons with average beam energy, yet strongly influence the paths of the secondary electrons. The new detectors are especially useful in low-voltage scanning electron microscopy.  相似文献   

20.
The first 3 of 18 neutron time-of-flight (nTOF) channels have been installed at the National Ignition Facility (NIF). The role of these detectors includes yield, temperature, and bang time measurements. This article focuses on nTOF data analysis and quality of results obtained for the first set of experiments to use all 192 NIF beams. Targets produced up to 2×10(10) 2.45 MeV neutrons for initial testing of the nTOF detectors. Differences in neutron scattering at the OMEGA laser facility where the detectors were calibrated and at NIF result in different response functions at the two facilities. Monte Carlo modeling shows this difference. The nTOF performance on these early experiments indicates that the nTOF system with its full complement of detectors should perform well in future measurements of yield, temperature, and bang time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号