首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tribological properties of a Fe3Al material in an aqueous solution of 1 mol/l H2SO4 corrosive environment sliding against a Si3N4 ceramic ball are studied using an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. We investigate the effects of load and sliding speed on tribological properties of the Fe3Al material. The worn surfaces of the Fe3Al material are examined by a scanning electron microscope (SEM) and an X-ray photoelectron spectroscope (XPS). It is found that the Fe3Al material exhibits better wear resistance than 1Cr18Ni9Ti stainless steel in the sulfuric acid corrosive environment. The wear rate of the Fe3Al material is on the order of 10?13 m3/m and increases with increasing load, but does not vary below the sliding speed of 0.08 m/s then dramatically increases with increasing sliding speed. The friction coefficient of the Fe3Al material is in the range of 0.1–0.28, and slightly increases with increasing load, and does not vary with the increase of sliding speed. The Fe3Al material occurs tribochemical reaction with the H2SO4 aqueous solution in the friction process. Wear mechanism of the Fe3Al material is dominated by microploughing and corrosive wear.  相似文献   

2.
Ti3Al coating was in situ synthesized successfully on pure Ti substrate by laser-cladding technology using aluminum powder as the precursor. The composition and microstructure of the prepared coating were analyzed by transmission electron microscopy, scanning electron microscopy (SEM), and X-ray diffraction technique. Thermal gravimetric analysis was used to evaluate the high-temperature oxidation resistance of the Ti3Al coating. The friction and wear behavior was tested through sliding against Si3N4 ball at elevated temperature of 20, 100, 300, and 500°C. The morphologies of the worn surfaces and wear debris were also analyzed by SEM and three-dimensional non-contact surface mapping. The results show that the Ti3Al coating with high microhardness, high-temperature oxidation resistance, and high temperature wear resistance. The pure Ti substrate is dominated by severe adhesion wear, abrasive wear, fracture, and severe plastic deformation at lower temperature, and severe adhesion wear, abrasive wear, plastic deformation, oxidation, and nitriding wear at higher temperature, whereas the Ti3Al coating experiences only moderate abrasive and adhesive wear when sliding against the Si3N4 ceramic ball counterpart. In addition, the wear debris of the laser-cladding Ti3Al coating sliding and Si3N4 friction pairs are much smaller than that of pure Ti substrate and Si3N4 friction pairs at elevated temperature.  相似文献   

3.
Fe3Si, Fe3Si alloys containing Cu were fabricated by arc melting followed by hot-pressing. The friction and wear behaviors of Fe3Si based alloys with and without Cu addition against Si3N4 ball in water-lubrication were investigated. The friction coefficient and the wear rates of Fe3Si based alloys decreased as the load increased. The wear rate of Fe3Si was higher than that of AISI 304. The addition of Cu can significantly improve the friction and wear properties of Fe3Si based alloys and substantially reduce the wear rates of Si3N4 ball. The wear rate of Fe3Si–10%Cu was 2.56 × 10−6 mm3 N−1 m−1 at load of 20 N and decreased to 1.64 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear rate of Si3N4 ball against Fe3Si–10%Cu was 1.41 × 10−6 mm3 N−1 m−1, while the wear rate of Si3N4 ball against AISI 304 was 5.20 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear mechanism was dominated by micro-ploughing. The combination of mechanical action (i.e., shear, smear and transference of Cu) and tribochemical reaction of Si3N4 with water was responsible for the improved tribological behavior of Fe3Si alloys containing Cu under high loads.  相似文献   

4.
The effects of normal load and velocity on the friction and wear behavior of single-phase Fe2B bulk have been investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Results indicate that the friction coefficient and wear rate both decrease at first and then increase with increasing load and velocity, respectively. Attributed to the formation of a lamellar film on the Fe2B surface, the lowest friction coefficient and wear rate are obtained at a velocity of 0.2 m/s under a load of 12 N. The dynamic friction coefficients under loads of 4 and 12 N are around 0.8 in the initial steady stage and then decrease to about 0.6, whereas the friction coefficient at 20 N shows no obvious change and remains around 0.82. The lubricating film consisting of Fe2O3, B2O3, SiO2, and H3BO3 reduces the friction coefficient at 0.2 m/s under a load of 12 N.  相似文献   

5.
The tribological properties of Ni3Al-Cr7C3 composite coating under water lubrication were examined by using a ball-on-disc reciprocating tribotester. The effects of load and sliding speed on wear rate of the coating were investigated. The worn surface of the coating was analyzed using electron probe microscopy analysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The results show the friction coefficient of the coating is decreased under water lubrication. The wear rate of the coating linearly increases with the load. At high sliding speed, the wear rate of the coating is dramatically increased and a large amount of the counterpart material is transferred to the coating worn surface. The low friction of the coating under water lubrication is due to the oxidizing of the worn surface in the wear. The wear mechanism of the coating is plastic deformation at low normal load and sliding speed. However, the wear mechanism transforms to microfracture and microploughing at high load with low sliding speed, and oxidation wear at high sliding speed. It is concluded that the contribution of the sliding speed to an increase in the coating wear is larger than that of the normal load.  相似文献   

6.
Fe3Al金属间化合物基摩擦材料的制备工艺与性能   总被引:1,自引:0,他引:1  
采用机械合金化结合加压烧结的方法制备了一种新的Fe2Al金属间化合物基摩擦材料,并对其制备工艺、微观结构和力学性能、抗氧化性以及千滑动摩擦磨损性能进行了试验研究。结果表明:Fe3Al金属间化合物基摩擦材料密度低,强度高,抗氧化性好,摩擦因数稳定,耐磨性好;不同摩擦阶段具有不同的磨损机制,主要包括磨粒磨损、裂纹萌生与扩展、微区脆性剥落以及氧化磨损等。  相似文献   

7.
The tribological properties of Fe7Mo6-based alloy, Mo, Fe and ASTM class no. 45 cast iron disk specimens were investigated against ASTM 52100 steel balls under the lubrication of two different kinds of hydrophobic ionic liquid: N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI) and N-N-N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI). When lubricated with PP13-TFSI or TMPA-TFSI, the Fe7Mo6-based alloy disk specimens exhibited lower friction coefficients and lower wear rates than the Mo, Fe and ASTM class no. 45 cast iron disk specimens. The low friction coefficients and low wear rates of the Fe7Mo6-based alloy were considered to be caused by the formation of low friction materials such as MoO3 and FeSO4 on the worn surface.  相似文献   

8.
In this study, the friction and wear properties of Fe7Mo6-based alloy, Fe and Mo disk specimens sliding against ASTM 52100 steel and Cu and SiC ball (or pin) specimens in ethyl alcohol were evaluated using an Optimol SRV oscillating friction and wear tester. The Fe7Mo6-based alloy disk specimens exhibited more stable friction coefficients than the Fe and Mo disk specimens when slid against the ASTM 52100 steel ball specimen. On the other hand, the Fe/SiC tribo-pairs exhibited the lowest average friction coefficients (0.14-0.17).  相似文献   

9.
We report here on the friction behavior of fine- and coarse-grained Ti3SiC2 against steel and Si3N4 balls. Two successive friction regimes have been identified for both grain sizes and both counterparts. First, Type I regime is characterized by a relatively low (0.1–0.15) friction coefficient, and very little wear. Sliding occurs between a tribofilm on the ball and the Ti3SiC2 plane when against steel. Then, a Type II regime often follows, with increased friction coefficients (0.4–0.5) and significant wear. Compacted wear debris seems to act as a third body resulting in abrasion of the ball, even in the case of Si3N4. The transition between the two regimes occurs at different times, depending on various factors such as grain size, type of pin, and normal load applied. Some experiments under vacuum showed that the atmosphere plays also a major role. The reason for this evolution is not fully clear at that time, but its understanding is of major technological importance given the unusual good properties of this material.  相似文献   

10.
《Wear》2004,256(7-8):705-713
The purpose of this study is to investigate the wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites (MMCs) fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction and wear tester under both dry and lubricated conditions. The wear properties of the three composites were evaluated in many respects. The effects of Saffil fibers, Al2O3 particles and SiC particles on the wear behavior of the composites were elucidated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction (COF) during the wear process was recorded by using a computer. Under dry sliding condition, Saffil/SiC/Al showed the best wear resistance under high temperature and high load, while the wear resistances of Saffil/Al and Saffil/Al2O3/Al were very similar. Under dry sliding condition, the dominant wear mechanism was abrasive wear under mild load and room temperature, and the dominant wear mechanism changed to adhesive wear as load or temperature increased. Molten wear occurred at high temperature. Compared with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under lubricated condition, Saffil/Al showed the best wear resistance among them, and its COF value was the smallest. The dominant wear mechanism of the composites under lubricated condition was microploughing, but microcracking also occurred to them to different extents.  相似文献   

11.
In the current research, the wear behavior of an aluminum matrix nanocomposite material prepared via mechanical milling and hot extrusion was investigated. The sample powders were milled at different milling times up to 15 h to produce nanostructure powders. Mechanical milling was used to prepare nanocomposite samples by the addition of 10 wt% of Al3Mg2 nanoparticles into the Al matrix. A pin-on-disk setup was used to evaluate the wear properties of the hot-extruded samples under dry condition. Hardness values were used for further explanation of the observed results. Scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) analyzer was used to analyze the worn surfaces. The results revealed a lower friction coefficient and a lower wear rate for the unmilled nanocomposite sample in contrast to a commercial pure Al one. The same pattern was also observed in the milled nanocomposite samples with respect to the base matrix.  相似文献   

12.
Friction and wear performance of engine oil were studied in presence of Zinc-dialkyldithiophosphate (ZDDP) and ZDDP–iron fluoride (FeF3) combination using a ball-on-ring wear testing device under boundary conditions. Friction and wear performance of engine oil improves in presence of ZDDP–FeF3 combination. In order to understand the wear mechanisms the microstructure and the chemical composition of wear debris generated during wear process were investigated using TEM together with EDX analyzes. Novel observations on the wear debris generated at different testing loads are presented. Independent of normal loads, amorphous debris containing P, O, Fe and Zn elements and crystalline debris of Fe2O3 are formed. No trace of S is present in amorphous debris under low load (2.32 GPa) conditions while S is a dominating element under high loaded (3.68 GPa) conditions. On the other hand, at lower loads a few iron oxide is formed while at higher loads larger sizes of iron oxides are formed resulting in larger friction and wear.  相似文献   

13.
Plasma electrolytic oxidation coatings were fabricated on the surface of Mg–8Li–1Al. The tribological behavior of the coated and uncoated Mg–Li alloy was investigated under dry friction conditions against a Si3N4 ball as counter-face material. The results indicated that the tribological behavior is greatly affected by the microstructure and phase compositions of the coatings. The PEO coatings significantly improved the properties of friction and wear of Mg–Li alloy.  相似文献   

14.
In this paper, Fe3O4 based magnetic fluids with different particle concentrations were prepared by the co-precipitation technique. The size of the Fe3O4 nanoparticles is about 13 nm and their shape is spherical. The tribological performances of the fluids with different concentration Fe3O4 nanoparticles were evaluated in a MMW-1A four-ball machine. The results show that the tribological performance of magnetic fluids with proper Fe3O4 nanoparticles can be improved significantly. The maximum nonseized load (P B) has been increased by 38.4% compared with carrier liquid. The wear scar diameter has been reduced from 0.68 mm to 0.53 mm and the relative percentage in friction coefficient has decreased to 31.3%. The optimal concentration of the Fe3O4 nanoparticles in the carrier liquid is about 4 wt.%.  相似文献   

15.
The Ni3Al matrix high temperature self-lubricating composites with different particle size were fabricated by the powder metallurgy technique. The effect of particle size on the mechanical and tribological properties of the composites was investigated in this paper. The results showed that the coarse particle composite exhibited the lowest friction coefficient and wear rate compared to the fine particle ones at a wide temperature range from room temperature to 1000 °C. The reason for the low wear rate was that the coarse bulk phase could provide better deformation resistance and higher load bearing capacity than the fine microstructure.  相似文献   

16.
采用机械合金化结合热压烧结的方法制备了Fe3Al金属间化合物块体材料,对其烧结后的物相、力学性能、微观结构以及干滑动摩擦磨损性能进行了试验研究。结果表明,热压烧结Fe3Al金属间化合物材料以有序度较低的B2结构为主,具有较高的强度和硬度。在不同的载荷和滑动速度下具有不同的摩擦学特性,不同摩擦阶段的磨损机制主要包括磨粒磨损、塑性变形、裂纹萌生与扩展、微区脆性剥落以及氧化磨损等。  相似文献   

17.
Tribological behaviors and the relevant mechanism of a highly pure polycrystalline bulk Ti3AlC2 sliding dryly against a low carbon steel disk were investigated. The tribological tests were carried out using a block-on-disk type high-speed friction tester, at the sliding speeds of 20–60 m/s under a normal pressure of 0.8 MPa. The results showed that the friction coefficient is as low as 0.1∼0.14 and the wear rate of Ti3AlC2 is only (2.3–2.5) × 10−6 mm3/Nm in the sliding speed range of 20–60 m/s. Such unusual friction and wear properties were confirmed to be dependant dominantly upon the presence of a frictional oxide film consisting of amorphous Ti, Al, and Fe oxides on the friction surfaces. The oxide film is in a fused state during the sliding friction at a fused temperature of 238–324 °C, so it takes a significant self-lubricating effect.  相似文献   

18.
The friction and wear behaviors of magnetron sputtered MoS2 films were investigated through the use of a pin and disk type tester. The experiments were performed for two kinds of specimens (ground (Ra 0.5μm) and polished (Ra 0.01 μm) substrates) under the following operating condifions: linear sliding velocities in the range of 22 -66 mm/s(3 types), normal loads varying from 9.8-29.4 N(3 types) and atmospheric conditions of air, medium and high vacuum(3 types). Silicon nitride pin was used as the lower specimen and magnetron sputtered MoS2 on bearing steel disk was used as the upper specimen. The results showed that low friction property of the MoS2 films could be identified in high vacuum and the specific wear rate in air was much higher than that in medium and high vacuum due to severe oxidation. It was found that the main wear mechanism in air was oxidation whereas in high vacuum accumulation of plastic flow and adhesion, were the main causes of wear.  相似文献   

19.
A Ni3Al matrix high temperature self-lubricating composite Ni3Al-BaF2-CaF2-Ag-Cr was fabricated by the powder metallurgy technique, and tribological behavior at a wide temperature range from room temperature to 800 °C was investigated. The results indicated that the composite exhibited low friction coefficients (0.30-0.36) and wear rates (0.65-2.45×10−4 mm3 N−1 m−1). It was found that the low friction coefficient was attributed to the synergistic effects of Ag, fluorides and chromates formed in the tribo-chemical reaction at high temperatures. The low wear rate of the composite was due to the high strength and the excellent lubricating properties.  相似文献   

20.
In the past decade Fe-based bulk metallic glasses (BMGs) have attracted increasing attention due to their beneficial properties, including high glass forming ability (GFA), high strength and hardness and high fracture toughness in both fundamental science and engineering application. Most research using these materials has been conducted at room temperature environment, and research that assesses their behavior especially at high temperature has been scarce. We present the results of high temperature effect on the friction and wear behavior of Fe-based bulk metallic glass (BMG), and we tested that this material may satisfy wear and oxidation resistance at high temperature as well as to explore the high temperature wear mechanism of the Fe-based BMG. The dry sliding tribological behaviors of Febased BMG against Si3N4 ceramic were conducted with a pin-on-disc friction and wear tribometer. The morphology of the worn surfaces of Fe-based BMG was examined by scanning electron microscopy (SEM) and the chemical composition characterized with energy dispersive spectroscopy (EDS) to observe the wear characteristics and investigate the wear mechanisms. The overall average friction coefficient value generally decreased with increasing temperature, and the glass transition and the formation of protective oxide film played an important role in the tribological behavior of BMG. The wear resistance of Fe-based BMG was not only from their hardness but also from the formation protective oxide layer. Analysis of the worn surface revealed abrasion, plastic deformation and oxidation during sliding test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号