首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
流变模型对剪切稀化流体弹流油膜厚度影响的研究   总被引:1,自引:0,他引:1  
基于Carreau流变模型和Ree—Eyring流变模型,对剪切稀化流体线接触弹流润滑进行了完全数值分析,得到了同一种润滑油在不同流变模型下的弹流油膜厚度。将理论分析得到的油膜厚度、经典弹流膜厚公式计算的油膜厚度以及实测的油膜厚度进行了对比,结果表明:基于Carreau流变模型的理论分析结果更能反映剪切稀化流体的实际弹流油膜厚度;在相同工况下,基于Ree—Eyring流变模型的理论分析结果低估了剪切稀化流体的油膜厚度,经典弹流膜厚公式过高地估计了剪切稀化流体的油膜厚度。研究结果表明:幂函数形式的流变模型更能反映剪切稀化流体的流变特性。  相似文献   

2.
为了研究圆柱滚子轴承接触区的混合润滑性能,建立基于Carreau非牛顿流体的热混合润滑模型,求解非牛顿流体线接触热混合润滑数值解。研究滑滚比、卷吸速度及载荷对线接触混合润滑特性的影响,并与相同工况下牛顿流体热混合润滑的结果进行对比。结果表明:随着滑滚比、卷吸速度及载荷的增大,油膜温度都会升高,Carreau非牛顿流体的温度要低于牛顿流体的温度;油膜厚度随着滑滚比、载荷的增大而减小,随着卷吸速度的增大而增大,Carreau非牛顿流体与牛顿流体膜厚相差不大;随着滑滚比的增大,2种流体的平均摩擦因数均增大,随着卷吸速度和载荷的增大,2种流体的载荷比均减小。  相似文献   

3.
指数率流体热弹流润滑分析   总被引:3,自引:0,他引:3  
应用多重网格技术,求得了指数率非牛顿流体线接触热弹流润滑的数值解,分析了油膜压力、厚度和温度等随流变指数、速度参数、滑滚比及载荷参数的变化关系,并与相同工况下的等温解进行了比较。结果表明,随着流变指数的增加,油膜厚度和温度、入口处的当量粘度、最小膜厚、中心膜厚和最大温升均增大,而油膜压力和摩擦因数的变化较小。指数率流体弹流润滑问题的热效应不可忽略;与压缩功项相比,油膜能量方程中的热耗散项对温度的影响最大。同时,无量纲速度参数、滑滚比和载荷参数等均影响热弹流润滑特性。  相似文献   

4.
为有效地评估润滑油膜热特性,采用Eyring非牛顿流体,建立考虑自旋运动的点接触热弹流润滑模型,应用多重网格技术和逐列扫描技术进行数值仿真,并讨论滑滚比、速度、特征剪应力、最大Hertz压力和自旋因数对弹流润滑性能的影响。结果表明:考虑自旋运动时,中高载时用非牛顿流体得到的油膜温度明显低于牛顿流体的油膜温度;自旋运动使膜厚及温度分布失去了原有的对称性,且对于较低剪切应力的非牛顿流体,自旋运动使温度分布的不规则性更明显;随载荷的增加,摩擦因数开始时几乎线性增加,而随着载荷的增加热效应也逐渐增强,因此摩擦因数在达到最大值后出现下降的趋势;随着自旋因数增加,膜厚及温度分布的不对称性增强,温度最大值升高,且向一侧偏移。  相似文献   

5.
选取Ree-Eyring流体、Bair-Winer流体和Carreau流体建立非牛顿流体等温弹流润滑模型,研究不同流变模型对最小膜厚和中心膜厚影响,并与Newton流体进行比较,同时讨论环境黏度对油膜压力和膜厚的影响。结果表明:基于Carreau流变模型得到的最小膜厚与实测结果最吻合;与Newton流体模型相比,Carreau流变模型和Ree-Eyring流变模型得到的油膜中心厚度较高,其中Carreau流变模型的油膜中心厚度最高,Bair-Winer流变模型得到的中心膜厚最小;与Roelands黏压模型相比,采用Doolittle自由体积黏压模型在中心区域产生较低的黏度;环境黏度高的润滑油油膜厚度增加,第二压力峰值也增大。  相似文献   

6.
考虑磨损对润滑状态的影响,构建带有磨损带的非牛顿流体圆接触热弹流润滑模型,分析磨损半宽对油膜压力、厚度、温度和摩擦因数的影响,并与牛顿流体的热弹流解进行比较。结果表明,随着磨损半宽的增大,最小油膜厚度明显减小,且总是处于磨损带边缘附近,并向入口处移动;而中心膜厚随磨损半宽的增大线性增大;卷吸速度、载荷及滑滚比对膜厚随磨损半宽改变的影响不大;非牛顿效应对温度和摩擦因数有较大影响。  相似文献   

7.
线接触弹流润滑综合数值分析   总被引:2,自引:2,他引:2  
应用多重网格法和多重网格积分法数值求解rNewton流体和Ree-Eyring流体线接触等温和热弹流润滑问题,分析了滑滚比对摩擦因数的影响,指出了润滑油的流变性和热效应对线接触弹流润滑油膜粘度的影响,以及不同滑滚比时压力、膜厚和温度的分布规律。结果表明:等温润滑时的摩擦因数随着滑滚比的增加而增加,热弹流润滑时的摩擦因数随着滑滚比的增加先增加后减小,热效应和非牛顿流体的剪稀作用均会使润滑油的等效粘度降低,从而影响摩擦因数;热效应的存在使油膜变薄,且在所讨论的工况条件下Newton流体的膜厚比Ree-Eyring流体的稍薄,热效应使第二压力峰变矮,且Ree-Eyring流体的第二压力峰矮于Newton流体的第二压力峰;纯滚动时,Ree-Eyring流体的温度比Newton流体的温度高,有滑滚比时,Newton流体的温度比Ree-Eyring流体的温度高,且油膜的温度随滑滚比的增加而增加。  相似文献   

8.
基于Ree—Eyring流变模型,建立线接触热弹流润滑方程,通过数值计算得出了载荷参数、速度参数、材料参数和滑滚比对于二次压力峰、最小油膜厚度和最大油膜温度的重要影响。  相似文献   

9.
结合载荷分担概念和弹流润滑理论,研究润滑剂的流变性对渐开线齿轮油膜厚度、摩擦因数等润滑特性的影响;分别采用Carreau流变模型和Doolittle-Tait自由体积黏度模型描述润滑剂的剪切稀化特性及黏压关系,研究齿轮载荷、转速、表面粗糙度和润滑剂压黏系数对摩擦因数的影响。研究结果表明:不同的润滑剂剪切稀化特性不同,因此油膜厚度、油膜承载比例和摩擦因数均不同;摩擦因数随着转矩的增大先显著增大,当超过某一转矩值时,摩擦因数开始缓慢变化;摩擦因数随着转速的增加先显著减小,当转速增加至某一值时摩擦因数又随之增大;随着表面粗糙度和润滑剂压黏系数的增大,摩擦因数均明显增大。  相似文献   

10.
离子液体因微观结构与普通润滑油不同,使其具有较低的黏压系数。采用光干涉油膜测量技术标定一种离子液体的黏压系数,并通过等温数值计算验证其可靠性。使用标定的黏压系数,对该离子液体进行膜厚、温升、摩擦因数和接触区中心黏度等热弹流润滑数值计算,并与具有相同黏度的普通润滑油的算例进行比较。计算结果显示,离子液体与同黏度润滑油相比具有突出的摩擦学性能,体现在离子液体在较宽速度和滑滚比范围内有非常低的温升和摩擦因数,而膜厚仍保持在同黏度润滑油的40%以上。离子液体的这种热弹流特性主要归因于其较低的黏压系数。  相似文献   

11.
渐开线直齿轮时变热弹流润滑模拟   总被引:2,自引:0,他引:2  
齿轮的非稳态弹流润滑问题,由于啮合过程中滑滚比、曲率半径、卷吸速度和载荷变化范围较大,因此数值计算稳定性很差。而考虑热效应的齿轮非稳态弹流润滑问题,数值计算就更困难。文中应用多重网格技术,考虑时变和温度场的影响,求得齿轮非稳态热弹流润滑问题的完全数值解,结果更接近实际。数值解得到轮齿的摩擦因数、油膜最高温升沿啮合线的变化规律以及两轮齿接触点中心压力、中心膜厚、最小膜厚沿啮合线的变化规律,同时获得任意瞬时轮齿接触点的压力、膜厚和轮齿间油膜温度分布,对分析齿轮传动问题具有重要意义。  相似文献   

12.
渐开线直齿圆柱齿轮非稳态热弹流润滑分析   总被引:7,自引:0,他引:7  
应用多重网格技术,不考虑轮齿表面粗糙度的影响,假设润滑剂为牛顿流体,考虑齿轮重合度对轮齿载荷的影响,根据实际轮齿载荷谱简化的轮齿载荷函数,求得了渐开线直齿圆柱齿轮非稳态热弹流润滑问题的完全数值解。结果表明,考虑油膜温升后,温度对轮齿啮入和啮出点的油膜厚度有显著影响。齿轮啮合过程中的最大油膜压力、最高油膜温升和轮齿间摩擦因数最大值都发生在啮合节点附近。在传动比大于1时,齿轮啮合过程中的最小油膜厚度通常在轮齿的初始啮入点。两轮齿间的油膜温升和摩擦因数受滑滚比、卷吸速度和载荷的影响。  相似文献   

13.
根据角接触球轴承自旋运动特征,同时考虑弹流润滑效应,建立角接触球轴承考虑自旋运动的弹流润滑模型;采用多重网格法求解弹性变形,利用有限差分法迭代求解雷诺方程,得到较为精确的数值解;分析不同赫兹接触压力、滚道表面粗糙度下自旋对角接触球轴承弹流润滑和油膜刚度的影响。结果表明:考虑自旋时随着Hertz接触压力、自旋角速度增大,油膜厚度减小,油膜压力增大,油膜承压区域呈细长状,并向接触中心靠近;随着滚道表面粗糙度幅值增大,油膜压力和膜厚均出现了波动,且考虑自旋运动时,轴承油膜厚度明显减小,油膜局部压力峰值更大;随着卷吸速度、润滑油黏度增大,油膜刚度减小,而考虑自旋运动时油膜刚度值更大;随着自旋角速度增大,油膜刚度逐渐增大。  相似文献   

14.
非稳态热弹流润滑一直是研究的热点和难点,针对变卷吸速度的点接触热弹性流体动力润滑问题,利用多重网格积分法,得到变卷吸速度的点接触热弹性流体动力润滑完全数值解。结果表明:卷吸速度的变化会引起油膜压力、膜厚和温度的变化;当卷吸速度变化到一定值时,在接触区会产生油膜的凹陷;凹陷的产生可用“温度-粘度楔”机制解释。  相似文献   

15.
应用数值分析方法研究了滑滚比对于线接触往复运动工况下的热弹性流体动力润滑的影响.计算结果显示:滑滚比显著影响油膜的摩擦学性能,尤其是油膜中的温升.在冲程末端,由于温升很小,油膜厚度受滑滚比的影响也小.随卷吸速度的增加,温度随滑滚比的增加而增加,从而膜厚随之变薄.滑滚比的增加造成了油膜的波动部分的延迟.  相似文献   

16.
基于Carreau剪切稀化流变模型,对空间用液体润滑剂的弹流润滑油膜厚度进行理论分析,将计算结果与牛顿模型、Ree-Eyring流变模型和实测数据进行对比,结果表明:在相同工况下不同种类的空间液体润滑剂剪切稀化流变特性不同,给出判断润滑剂发生剪切稀化条件;Carreau剪切稀化流变模V比Ree-Eyring剪切稀化流变模型更能反映实际工况;基于Carreau剪切稀化流变模型,得到空间用剪切稀化润滑剂的弹流油膜厚度修正系数公式.  相似文献   

17.
根据弹流润滑理论与渐开线直齿轮齿廓啮合特点,建立非牛顿流体直齿轮副弹流润滑模型,采用数值方法求解不同工况条件对油膜压力、油膜厚度分布及啮合周期内摩擦因数的影响。研究表明,转速、输入转矩及润滑油粘度产生变化,均会影响油膜压力及膜厚分布,最终导致啮合周期内摩擦因数发生变化,且摩擦因数在靠近节点处达到最小值。  相似文献   

18.
将机械急停时滚动轴承、齿轮等的弹流润滑油膜的渐变过程简化为从稳恒状态突然转化为恒载荷纯挤压状态,然后随时间的推移挤压效应逐渐消失的过程,建立了椭圆接触瞬态弹流润滑模型。假设润滑油为牛顿流体,在等温条件下用多重网格技术进行了动态数值求解,讨论了急停前卷吸速度分别沿椭圆接触区的长轴和短轴方向时,不同参数条件下的残留弹流润滑膜的压力和膜厚随时间的变化规律。数值计算结果表明,急停后润滑油会逐渐被挤出接触区,因此残留油膜只能保持很短的时间;较高的Hertz接触压力会通过增加润滑油粘度而延长残余油膜的维持时间,但不能根本上改变上述变化趋势,卷吸速度的方向也不能改变上述变化趋势。  相似文献   

19.
基于Evans-Johnson流变模型和理想粘塑性流变模型对粘塑性流体弹流润滑进行了数值求解。结果表明:基于两种模型所得到的油膜压力分布没有本质的区别,但油膜厚度有很大的不同,其中由前者所得的中心膜厚比由后者所得的中心膜厚低。  相似文献   

20.
针对改善点接触高副接触零件润滑状况的现实问题,对赫兹接触区内的润滑油膜进行了研究。耦合了接触力学和流体动力润滑方程,采用多重网格法,使用Fortran语言编程求解,对等温点接触弹流润滑方程组进行了数值计算,从而得到了不同椭圆率Ke、载荷w、卷吸速度u和粘度η_0等参数影响下的膜厚和压力变化曲线;通过研究膜厚和压力变化过程中最小膜厚和二次压力峰的位置,以及膜厚和压力的变化程度,得到了影响赫兹接触区内油膜变化规律的因素,并进行了分析和阐述。研究结果表明:接触椭圆随着椭圆率、载荷、卷吸速度和粘度等参数的改变而发生变化,接触椭圆的改变不同程度上影响着润滑油的膜厚和压力;在一定范围内增大椭圆率、卷吸速度和粘度及减小载荷,有利于改善润滑性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号