首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The fretting wear behavior of the contact between Zircaloy-4 tube and Inconel 600, which are used as the fuel rod cladding and grid, respectively, in PWR nuclear power plants was investigated in air. In this study, number of cycles, slip amplitude and normal load were selected as the main factors of fretting wear. The results indicated that wear increased with load, slip amplitude and number of cycles but was affected mainly by the slip amplitude. SEM micrographs revealed the characteristics of fretting wear features on the surface of the specimens such as stick, partial slip and gross slip which depended on the slip amplitude. It was found that fretting wear was caused by the crack generation along the stick-slip boundaries due to the accumulation of plastic flow at small slip amplitudes and by abrasive wear in the entire contact area at high slip amplitudes.  相似文献   

2.
采用面接触扭动微动形式,以动力定位系统可调距螺旋桨桨-毂轴承摩擦副材料(CuNiAl-42CrMo4)为对象,以不同的角位移幅值模拟海水波动影响下的微动磨损行为,并结合扫描电子显微镜和超景深三维显微镜对磨痕形貌进行分析,探究桨-毂轴承摩擦副材料扭动微动磨损规律。结果表明,随着角位移幅值的增加,扭动微动依次运行于部分滑移区、混合区、滑移区,摩擦因数减小,同时磨损量增加,微动损伤中剥层机制所占的比例逐渐增加,且由于疲劳裂纹扩展的不利影响,实际运行过程中要尽量避开混合区。  相似文献   

3.
基于双重扩展自适应卡尔曼滤波的汽车状态和参数估计   总被引:4,自引:0,他引:4  
准确实时地获取行驶过程中的状态信息是汽车动态控制系统研究的关键,为此提出了一种新的汽车状态估计器。建立了包含不准确模型参数和未知时变统计特性噪声的非线性汽车动力学模型,针对该非线性系统提出一种双重扩展自适应卡尔曼滤波算法(DEAKF)。该算法采用两个卡尔曼滤波器并行运算,状态估计和参数估计互相更新,同时将带遗忘因子的噪声统计估值器嵌入到状态校正过程和参数校正过程之间,以解决系统的噪声时变问题。基于ADAMS的虚拟试验和实车试验结果表明,该算法的状态估计精度高于EKF方法和DEKF方法的状态估计精度,同时具有良好的模型参数校正能力,对汽车动态控制系统中估计器的设计具有理论指导意义。
  相似文献   

4.
To obtain a better idea of the influence of various factors on the probability of fretting corrosion in a tight joint, the tangential pliability of the joint is taken into account. The factors considered are the flexural stress of the shaft; the pressure at the contact surface; the mean height of the microprojections at the contact surfaces; and the length of the joint.  相似文献   

5.
This paper presents an experimental study on the tribological behaviour and cracking response of a Ti-10V-2Fe-3Al titanium alloy under fretting loading with a cylinder on plane configuration. Three types of surfaces were investigated: a polished one considered as the reference, a ground one and a shot peened surface. Surfaces were compared with respect to residual stress, hardness and roughness. The first step of this study was to determine sliding conditions and coefficient of friction of the three contact types. Next, fretting tests under stabilized partial slip regime were carried out to investigate crack nucleation and propagation. Results show that whatever surface roughness or residual stress in the material, tribological behaviour is the same. These latter confirm that sliding condition and coefficient of friction in partial slip regime is due to material effect and not to roughness or surface hardness. Then, residual stress induced by grinding or shot peening have no influence on the crack nucleation threshold under fretting solicitation because crack nucleation is only induced by a sufficient tangential loading. The crack nucleation threshold is formalized by applying the Crossland criterion taking into account the stress gradient and the ensuing “size effect”. As expected, cracks propagation is influenced by residual stress under the surface. Compared to the reference case, for a same loading parameters set, residual stress induced by grinding is not sufficient to decrease the crack length reached whereas effects of shot peening decrease highly these latter. So, there is a threshold of residual stress from which residual stresses are useful against cracking.  相似文献   

6.
在自制的微动疲劳试验机上开展中性腐蚀环境下单根钢丝的微动疲劳实验,考察在相同接触载荷下,不同振幅对钢丝的微动疲劳行为的影响,并用扫描电子显微镜观察疲劳钢丝的磨痕和断口形貌,研究钢丝微动疲劳断裂机制.结果表明:在较大的振幅下,钢丝的微动区均处于滑移状态,而在较小振幅下,钢丝的微动区从滑移状态逐渐转变为黏着状态;磨损机制主要为磨粒磨损、疲劳磨损、腐蚀磨损和塑性变形;钢丝疲劳寿命随着微动振幅的增大而减小;钢丝的疲劳断口可分为3个区域,即疲劳源区、裂纹扩展区及瞬间断裂区.  相似文献   

7.
This paper investigates the effect of three-dimensional loading on macroscopic fretting variables, such as contact tractions, slip and contact stresses over the dovetail interface, carried out using three-dimensional finite element method with frictional contact at the interface. Three-dimensional loading effect is brought out by considering a skewed dovetail slot in the geometry and by application of forces and moments acting on the airfoil. The study reveals that a skewed (20°) dovetail experiences about 100% more peak contact pressure and slip amplitude than a straight dovetail slot. The peak contact pressure and contact stress are observed near contact edge, either at the leading or the trailing edge, for all the load cases studied for skewed dovetail. The contact traction, stress and slip variation along the dovetail are significant when compared with two-dimensional results. The study suggests that skew angle and three-dimensional loading need to be considered, for an improved understanding of the fretting aspects of a dovetail interface.  相似文献   

8.
Fretting fatigue behavior of unpeened and shot-peened Ti–6Al–4 V was investigated using a dual-actuator test setup which was capable of applying an independent pad displacement while maintaining a constant cyclic load on the specimen. The fretting regime was identified based on the shape of the hysteresis loop of tangential force versus relative slip range and the evolution of normalized tangential force. The fretting regime changed from stick to partial slip and then to gross slip with increasing relative slip range, and the transition from partial to gross slip occurred at a relative slip range of 50–60 μm regardless of the applied cyclic load, surface treatment, contact load and contact geometry. The fretting fatigue life initially decreased as the relative slip range increased and reached a minimum value, and then increased with increase of the relative slip range due to the transition in fretting regime from partial slip to gross slip. Shot-peened specimens had longer fatigue life than unpeened specimens at a given relative slip range, but the minimum fatigue life was found to be at the same value of relative slip range for both shot-peened and unpeened specimens. Tangential force was directly related to relative slip and this relationship was independent of other fretting variables.  相似文献   

9.
Lu Feng  Jinquan Xu 《Wear》2006,260(11-12):1274-1284
The deformation occurring under fretting conditions occurs over length scales of the same order as the grain size, so the plastic anisotropy plays a significant role in the very local region near the contact edge during fretting process. The present study first describes plastic anisotropy by unified anisotropy plastic model coupling with Archard's wear law on the fretting behavior incorporating the effect of wear debris into such a quantitative model. The finite element method, utilizing this model, is used to analyze gross slip fretting conditions. The implementation of the wear simulation tool together with anisotropy cyclic plasticity analysis during fretting process is applied to the wear depth simulation. The present study validates the experiment phenomena from numerical simulation that failure location of the specimens under the flat-on-flat configuration is very close to the trailing edge. The scar at the trailing edge is much deeper than any other locations and the larger relative slip range resulted in considerably deeper surface damage. Another interesting discovery is that when material with different orientations the degree of wear also develops differently and the quantitative prediction is given.  相似文献   

10.
The influence of oil lubrication on the fretting wear behaviors of 304 stainless steel flat specimens under different fretting strokes and normal loads has been investigated. The results proved that fretting regimes and fretting wear behaviors of 304 stainless steels were closely related to the fretting conditions. In general, the increase in normal load could increase wear damage during sliding wear. However, according to the results, a significant reduction in wear volume and increase in friction coefficient was observed when the normal load was increased to critical values of 40 and 50 N at a fretting stroke of 50 μm due to the transformation of the fretting regime from a gross slip regime to partial slip regime. Only when the fretting stroke further increased to a higher value of 70 μm at 50 N, fretting could enter the gross slip regime. There was low wear volume and a high friction coefficient when fretting was in the partial slip regime, because oil penetration was poor. The wear mechanisms were fatigue damage and plastic deformation. There was high wear volume and low friction coefficient when fretting was in the gross slip regime, because the oil could penetrate into the contact surfaces. Unlike the wear mechanisms in the partial slip regime, fretting damage of 304 stainless steels was mainly caused by abrasive wear in the gross slip regime.  相似文献   

11.
Abstract

The tension–tension fretting fatigue tests of steel wires were performed on a self-made fretting fatigue test equipment under contact loads ranging from 40 to 70 N and a strain ratio of 0·8. The results showed that when the contact load increased, the fretting regime of steel wires transformed from gross slip regime to mixed fretting regime. The fretting fatigue life in the mixed fretting regime was significantly lower than that in the gross slip regime. The main fretting wear mechanisms in the gross slip regime, where there were serious fretting damage and a lot of wear debris, were abrasive wear and fatigue wear. Microcracks were observed in the fretting scar of the mixed fretting regime, and the main fretting wear mechanisms were adhesive and fatigue wears. The fretting wear scar was the fatigue source region, and the fatigue fracture surface could be divided into three regions.  相似文献   

12.
It is time consuming or even impossible to simulate the whole process of fretting wear, since it always involves millions of cyclic loadings. This paper focuses on the modeling and evaluation method of fretting wear for the typical bridge type fretting test with a flat pad. The frictional work on the contact interface is chosen as the parameter to evaluate the fretting wear. To verify the fretting wear model, the predicted wear profile is compared with that obtained by the experimental results. Fretting wear always includes plastic deformations due to the edge stress singularity. The effect of cumulative plastic deformation is also taken into account in the wear model. The role of the coefficient of friction at the contact interface on the fretting wear has also been discussed.  相似文献   

13.
Fretting fatigue behavior of a titanium alloy, Ti–6Al–4V, in contact with two pad materials having quite differing values of hardness and elastic modulus (aluminum alloy 2024 and Inconel 718) using “cylinder-on-flat” configuration was investigated at different applied stress levels and contact forces. Applied contact forces for both pad materials were selected to provide two Hertzian peak pressures of 292 and 441 MPa. Finite element analyses of all tests were also conducted which showed that an increase in contact force resulted in a smaller relative slip amplitude and a larger width of stick zone. These two factors, along with the lower coefficient of friction during fretting, resulted in less fretting damage on the contact surface of specimen subjected to higher contact force relative to that at lower contact force regardless of the hardness difference of mating materials. Also, an increase in hardness resulted in greater fretting damage on the contact surface of specimens only at higher contact force. Further, the fretting fatigue life decreased with an increase of applied contact force at higher applied effective stress, while it increased at lower applied effective stress with both pad materials. These observations suggest that there is complex interaction among hardness difference between mating surfaces, relative slip amplitude, and stress state in the contact region during fretting fatigue of dissimilar materials.  相似文献   

14.
Lee  H.  Mall  S. 《Tribology Letters》2004,17(3):491-499
Frictional force behavior during fretting fatigue and its interdependence on other fretting variables are investigated. Both coefficient of static friction and the normalized frictional force (i.e., the ratio of frictional force and normal contact load) increase during the earlier part of a fretting fatigue test and then both reach to a stabilized value. The variation of temperature in the contact region and normalized frictional force with increasing cycle numbers and bulk stress show similar trend implying that normalized frictional force represents the average friction in the contact region during a fretting fatigue. An increase in bulk stress, relative slip, and hardness of pad material results in an increase of the normalized frictional force, while an increase in contact load, frequency and temperature decreases the normalized frictional force. The normalized frictional force is also affected by the contact geometry. On the other hand, coefficient of static friction increases with an increase in the hardness of mating material, temperature and roughness from shot-peening treatment, but is not affected by contact geometry and displacement rate. Further, the normalized frictional force is not affected by the contact geometry, roughness and applied bulk stress level when fretting fatigue test is conducted under slip controlled mode, however it increases with increasing applied relative slip and decreasing contact load in this case.  相似文献   

15.
On the mechanisms of various fretting wear modes   总被引:1,自引:0,他引:1  
According to relative motion directions for a ball-on-flat contact, there are four fundamental fretting wear modes, e.g., tangential, radial, torsional and rotational modes. In this paper, the mechanisms of these four fundamental fretting wear modes, particularly for the later three modes, have been reviewed from results obtained by the authors in combination with results from literature. Some general features have been reported. Differences both in running and degradation behavior have been discussed in detail. Results showed that some similar laws for three fretting regimes (partial slip regime, mixed regime and slip regime), fretting maps (running condition fretting map and material response fretting map), wear and cracking mechanisms obtained from the classic mode (i.e. tangential fretting) were also identified and useful to characterize the other modes. Nevertheless, the occurrence of relative slip for the radial fretting, the formation of mixed regime for the torsional fretting, the evolution of surface morphology for the rotational fretting were quite different compared to that of the classical fretting mode.  相似文献   

16.
The susceptibility of tin-plated contacts to fretting corrosion is a major limitation for its use in electrical connectors. The present paper evaluates the influence of a variety of factors, such as, fretting amplitude (track length), frequency, temperature, humidity, normal load and current load on the fretting corrosion behaviour of tin-plated contacts. This paper also addresses the development of fretting corrosion maps and lubrication as a preventive strategy to increase the life-time of tin-plated contacts. The fretting corrosion tests were carried out using a fretting apparatus in which a hemispherical rider and flat contacts (tin-plated copper alloy) were mated in sphere plane geometry and subjected to fretting under gross-slip conditions. The variation in contact resistance as a function of fretting cycles and the time to reach a threshold value (100 mΩ) of contact resistance enables a better understanding of the influence of various factors on the fretting corrosion behaviour of tin-plated contacts. Based on the change in surface profile and nature of changes in the contact zone assessed by laser scanning microscope (LSM) and surface analytical techniques, the mechanism of fretting corrosion of tin-plated contacts and fretting corrosion maps are proposed. Lubrication increases the life-time of tin-plated contacts by several folds and proved to be a useful preventive strategy.  相似文献   

17.
The fretting conditions in a contact between an epoxy thermoset and a glass counterface have been investigated using a specific device which allows in situ observation of the contact area. The critical displacement for transition from partial slip to gross slip conditions was investigated by the in situ detection of the micro-displacements and by the analysis of the fretting loops. Experimental results were in good relation with the theoretical predictions derived from Mindlin's approach of incipient sliding. Depending on the loading conditions, a progressive change from gross slip to partial slip conditions was found to occur during the early stages of the fretting loading, i.e., before the appearance of any macroscopic damage such as cracking or particle detachment. These fretting conditions were synthesized in a fretting map giving the boundary between various fretting regimes as a function of the normal load, the imposed displacement and the number of cycles.  相似文献   

18.
《Wear》2002,252(3-4):199-209
The present work describes research conducted on the fretting behaviour of S 355 MC galvanised steel sheet. In order to study the influence of the normal load and the displacement effect, some of the specimens were galvanised by hot dipping and the rest were only polished before being tested. Fretting tests were carried out on a specially developed fretting rig prototype under ‘crossed-cylinders’ contact geometry. Tests were done during 0.72×106 cycles in laboratory air conditions. The tangential force and the displacement were measured in order to establish the fretting cycles for each fretting condition. The fretted surfaces were analysed by means of optical and scanning electron microscopes to identify the main wear mechanisms. Three different fretting regimes were identified: the stick regime; the slip regime; and the mixed stick–slip regime, which depended mainly on the influence of the normal load and the stroke.  相似文献   

19.
The friction coefficient is an important factor in fretting fatigue. The frictional behavior of quenched and tempered steel 34CrNiMo6 was studied in smooth fretting point contact with measurements at partial and gross slip conditions. The effect of the start-up scheme is studied by altering the way the displacement amplitude is developed to the target value. This only has a minor effect on the maximum friction coefficient but it does alter the frictional behavior. The friction coefficient increases as tangential displacement amplitude is increased and it has a maximum value of 1.5-1.6 at the transition to gross sliding.  相似文献   

20.
Under the conditions of cyclic loading at fixed joints, the repeated mutual slip of the contacting surfaces is observed in the contact zone, fretting appears, and the wear and destruction of the assembly elements occurs. The existing methods for overcoming fretting are aimed at reducing its intensity. The finite element analysis of fixed joints of smooth contact surfaces and surfaces with relief under the conditions of cyclic loading of junctions makes it possible to reveal the regions of mutual slip and, to determine the parameters of the microrelief, which contribute the most to the onset of contact shakedown. The method for improving the resistance to fretting in friction units based on achieving the conditions for the onset of contact shakedown using microrelief is implemented for fixed joints of a hard-alloy cutter pick and a drilling bit rolling cutter, as well as for an abutting joint of the rotor impeller shrouds of a universal gas distributor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号