首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文采用硫酸镍、柠檬酸盐和钨酸钠为基本组分的镀液,获取了非晶Ni-W镀层。利用扫描电镜、X射线衍射仪、磨损实验机等对镀层形貌、结构、硬度、耐磨和耐蚀性进行了分析探讨。结果表明:在本实验条件下,Ni-W非晶镀层的耐磨性优于硬铬,耐酸性优于不锈钢。热处理能够提高镀层的硬度和耐磨性。  相似文献   

2.
本文采用硫酸镍、柠檬酸盐和钨酸钠为基本组分的镀液,获取了非晶Ni-W镀层,利用扫描电镜、X射线衍射仪、磨损实验机等对镀层形貌、结构、硬度、耐磨和耐蚀性进行了分析探讨。结果表明:在本实验条件下,Ni-W非晶镀层的耐磨性优于硬铬。耐酸性优于不锈钢。热处理能够提高镀层的硬度和耐磨性。  相似文献   

3.
非晶基上弥散分布着金属间化合物的复相合金镀层,具有优异的耐蚀性及良好的耐磨性。但研究该复合镀层时,非晶基的确定及非晶与微晶化例的调整无现成方法。用小角X射线散射和扫描隧道显微术的组合分析,解决了这一新问题。  相似文献   

4.
Ni-P/SiC、Ni-P/WC纳米复合电刷镀镀层的组织与性能   总被引:1,自引:0,他引:1  
利用电刷镀技术制备了Ni-P/SiC、Ni-P/WC纳米复合镀层;用扫描电镜、X射线衍射仪和电子探针等分析了复合刷镀层表面形貌、微观组织结构、成分分布,并进行了硬度和耐磨性试验.结果表明:与传统镍磷镀层相比较,纳米颗粒的加入使复合镀层中的组织结构更加致密,显微硬度有较大程度的提高,耐磨性增强,其中Ni-P/WC镀层的性能优于Ni-P/SiC镀层.  相似文献   

5.
基体表面粗糙度对纳米复合镀层组织及性能的影响   总被引:1,自引:0,他引:1  
采用电刷镀技术在不同表面粗糙度的W18Cr4V高速钢基体上制备了纳米PTFE和纳米WC颗粒增强的镍基复合镀层,采用扫描电镜对纳米复合镀层的表面和截面形貌进行了观察,研究了基体表面粗糙度对纳米复合镀层耐磨性、耐蚀性和结合强度的影响.结果表明:随着基体表面粗糙度的减小,纳米复合镀层的表面更加平整致密,组织更加细小均匀,镀层厚度减小,镀层中的裂纹数量减少,镀层的耐磨性、耐蚀性和结合强度均得到明显提高.  相似文献   

6.
用电刷镀技术制得了镍基 n-SiO_2复合镀层、镍基 n-SiC 复合镀层以及镍基镀层,并对镀层的滑动磨损性能进行了试验研究.纳米复合镀层的表面形貌比较细腻,镀层中纳米粒子分布均匀,与基质金属结合紧密.显微硬度高,可达到 HV692,比镍基镀层提高约50%.滑动磨损试验结果表明,纳米粒子的加入可以提高镀层的耐磨性.纳米复合镀层的磨损机制以疲劳磨损为主,而纯镍镀层以粘着磨损为主.  相似文献   

7.
纳米金刚石粉复合镀层耐磨性能及应用   总被引:1,自引:0,他引:1  
阐述了纳米金刚石的特性及制备方法,研究分析了纳米金刚石微粉的加入对复合镀层结合强度、硬度、耐磨、减摩性能的影响,介绍了工模具采用纳米金刚石复合镀覆技术的实用效果。结果表明,纳米金刚石微粉的加入可改善复合镀层的结合强度,显著提高镀层硬度和耐磨及减摩性能。  相似文献   

8.
本文分析了活塞环成型轧辊的失效机制,在不同刷镀工艺参数下制备了Ni-P合金非晶电刷镀镀层,研究了工艺参数对镀层沉积速率、镀层组织与性能的影响,最佳工艺条件下镀层的耐磨性以及热处理后镀层性能的变化等,结果表明,在电刷电压为12V,阳极运动速度为10m/min条件下,镀层可获得最佳的组织与性能,Ni-P非晶电刷镀层经热处理后由于Ni3P的析出,使镀层硬度提高,从而提高了镀层的耐磨性。实际应用表明,经电刷镀后轧辊的使用寿命是原来的2倍。  相似文献   

9.
磁性涂镀层测厚仪技术现状与展望   总被引:1,自引:0,他引:1  
本文简要叙述了涂渡层测厚技术的发展现状及时代特征,重点介绍了目前国内外磁性涂镀层测厚度仪典型产品的功能特点,初步探讨了涂镀层测厚仪技术的未来发展趋势。  相似文献   

10.
代替镀硬铬电镀层的研究现状   总被引:2,自引:0,他引:2  
传统镀硬铬技术存在环境污染问题及镀铬层的性能缺陷。电沉积合金及其复合镀是比较有前途的代硬铬工艺。本文综述了近年来代替镀硬铬电镀层的研究进展。重点探讨了非晶电镀、复合电镀和合金电镀代替硬铬电镀层的研究现状,结果显示以上镀层无论在使用性能还是在环境保护方面均优于硬铬镀层。  相似文献   

11.
纳米α-Al_2O_3和γ-Al_2O_3颗粒增强镍-磷复合镀层的性能对比   总被引:3,自引:0,他引:3  
采用化学镀技术制备了纳米α-Al2O3和γ-Al2O3颗粒增强的镍-磷复合镀层,利用X射线衍射仪、扫描电子显微镜、电子探针等对复合镀层的物相结构、表面形貌、成分分布进行了分析,还对比了复合镀层与镍-磷镀层的显微硬度、耐磨性和耐腐蚀性。结果表明:与镍-磷镀层相比,纳米Al2O3颗粒的加入没有改变镀层的晶体结构,但使镀层的显微硬度明显提高;纳米α-Al2O3颗粒的加入提高了镀层的耐腐蚀性和耐磨性,而纳米γ-Al2O3颗粒的加入反而使镀层耐磨性和耐腐蚀性下降。  相似文献   

12.
对比研究了润滑油中磨粒尺寸和含量对镍基纳米Al2O3复合电刷镀层和快速镍刷镀层磨损性能的影响。结果发现,由于纳米颗粒的作用,存相同条件下纳米复合镀层的耐磨性比快速镍镀层提高了30%~50%,而且复合镀层的磨损体积随磨粒尺寸和含量的影响不如快速镍镀层显著。  相似文献   

13.
分析了将纳米三氧化二铝(Al2O3)和聚四氟乙烯(PTFE)颗粒加入常规电刷镀液中制备纳米耐磨和减摩复合镀层的组织、显微硬度、耐磨性和摩擦因数。结果表明:纳米颗粒的加入使复合镀层组织明显细化和致密。随着纳米Al2O3颗粒含量的增加,复合镀层的显微硬度和耐磨性有明显的提高,纳米PTFE的加入有助于减少复合镀层的摩擦因数。  相似文献   

14.
本文简要叙及涡流涂镀层测厚技术的基本原理与涡流测厚方法标准概况,重点介绍了涡流涂镀层测厚仪国内外典型产品的功能特征和应用现状。  相似文献   

15.
采用扫描电镜、X射线衍射仪、差热分析仪等分析了化学镀镍-磷-纳米SiC-PTFE复合镀层的表面形貌和物相结构,并研究了镀层的晶化动力学。结果表明:纳米SiC、PTFE颗粒均匀地分布于复合镀层中,且SiC颗粒在镀层中发生部分团聚;随热处理温度升高,镀层由镀态下的非晶态出现晶化,并逐渐析出镍、Ni3P以及Ni3Si等晶相;与镍-磷镀层相比,这种含两种颗粒的复合镀层表现出较低的晶化起始温度与较长的晶化时间,且其晶化激活能为268kJ.mol-1。  相似文献   

16.
Fe-W-Al2O3纳米复合镀层的结构及其耐磨性   总被引:1,自引:1,他引:1  
利用复合电沉积工艺制备了Fe-W-Al2Q3纳米复合镀层,采用扫描电镜及附带的能谱仪、X射线衍射仪和显微硬度计等研究了复合镀层的表面形貌、成分、结构、显微硬度和耐磨性能。结果表明:Fe-W-Al2O3纳米复合镀层仍呈非晶态,Al2O3纳米粒子在复合镀层中分布均匀,镀层组织致密;Al2O3纳米粒子的添加提高了复合镀层的显微硬度,室温下该复合镀层的耐磨性是Fe-W合金镀层的2倍,并且有效减轻了镀层的内应力,避免了镀层裂纹的出现。  相似文献   

17.
用高速电喷镀技术在钢基片上制得了含有纳米SiO2和聚四氟乙烯(PTFE)的镍基复合镀层;在镀液中加入适当的分散剂,用磁性搅拌机对镀液中的纳米颗粒进行分散,用扫描电镜观察镀层的表面形貌和显微组织;用销-盘对磨形式对镀层的滑动磨损性能及其在人造海水中的腐蚀速率进行了试验研究。结果表明:喷射速度越大,镀层越致密;SiO2和PTFE可以提高镍镀层的致密性、细化镀层晶粒,显著提高镀层的耐磨性;同时含有两种颗粒的复合镀层的耐磨性比只含一种颗粒的耐磨性高;镀层中PTFE含量越高,其在人造海水中的耐腐蚀性能越好。  相似文献   

18.
复合电沉积制备纳米钡铁氧体/钴镍合金磁性镀层   总被引:1,自引:0,他引:1  
采用复合电沉积技术制备了纳米钡铁氧体(BaFe_(12)O_(19))/钴镍合金磁性镀层,研究了纳米钡铁氧铁颗粒对镀层表面形貌及磁性能的影响和镀液中BaFe_(12)O_(19)颗粒含量、电流密度、镀液温度、施镀时间等电沉积工艺参数对复合镀层矫顽力和最大磁能积的影响。结果表明:镀液中加入纳米钡铁氧体颗粒通过优化电沉积工艺可以制备出磁性复合镀层,可明显提高镀层的最大磁能积和矫顽力;以上四种工艺参数对镀层的最大磁能积和矫顽力有明显影响,但影响规律各不相同。  相似文献   

19.
用化学复合镀方法制备含碳纳米管(CNTs)和纳米稀土氧化物Ni-Ti纳米复合镀层,研究纳米粒子含量对纳米复合镀层摩擦磨损性能的影响,并用扫描电子显微镜SEM对纳米镀层进行分析,并测定纳米复合镀层的显微硬度,利用AES能谱分析其磨损机制。结果表明:随着纳米粒子含量的增加,纳米复合镀层的显微硬度增加,摩擦因数降低,耐磨性能提高;质量分数为1.5%的纳米复合镀层的摩擦因数最低,并显示优良的耐磨性能。  相似文献   

20.
研究了HT250铸铁材质机械零件表面涂镀N1-P与Ni-CO合金镀层和合金化后的工作性能,采用电子显微镜,光学显微镜等对复合强化后的镀层表面形貌、次表面组织、纵剖面组织,表面粗糙度,镀层及合金化后的硬度、镀层成份、镀层与基体的结合强度等进行了分析.试件的接触疲劳试验结果表明能显著提高接触疲劳寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号