首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Wear》2007,262(7-8):833-844
In this study, attempt has been initiated to investigate the wear resistance of Ni–P alloy coatings manufactured by pulse current (PC) electroforming technology. The wear tests of such plated coatings were carried out at ambient temperature and without lubricants. The parameters of the electroforming experiments include peak current density, duty cycle and pulse frequency. The results of this investigation showed that the internal stress of the PC-deposited Ni–P coating is much lower than that of direct current (DC) deposited Ni–P coating. The analytical results indicate that increasing of the phosphorus content in the layer reduces the hardness of the Ni–P electroformed coatings, and it gradually leads to transformation of the coatings structure from micro-crystalline to nano-crystalline/X-ray amorphous. Wear trace morphology shows that the wear mechanism of Ni–P coatings herein is related to hardness. As the hardness increases, the worn morphology of the coatings changes from with scratches and abrasions to that with the steel debris adhered on the coatings. The wear resistance of Ni–P alloy electroformed layers increases with the hardness of the coatings. The hardness primarily affects the wear resistance of the Ni–P as plated coatings, and the optimum wear resistance of Ni–P coatings can reach 11 times that of Ni coatings.  相似文献   

2.
《Wear》2007,262(7-8):978-985
In this research, hardness and wear resistance of two types of electroless coating have been investigated including Ni–P and Ni–P–Al2O3 coatings. These coatings were applied on AISI 1045 steel discs by electroless deposition process and then they were heat treated at 200, 400 and 600 °C for 1 h. Wear resistance of deposits was measured by the pin on disc method and wear surfaces and debris were studied by scanning electron microscopy (SEM). Also, microstructural changes were evaluated by X-ray diffraction (XRD) analysis.The results showed that the existence of alumina particles in Ni–P coating matrix led to an increase in the hardness and wear resistance of the deposits. It was also found that heat treated coatings at about 400 °C have the maximum hardness and wear resistance.  相似文献   

3.
《Wear》2006,260(9-10):1070-1075
Wear resistance of unalloyed ductile iron (Dl) can be enhanced either by heat treatment or by deposition of hard coating. The electrodeposition of Ni–SiC composite on unalloyed Dl (GGG 40) has been applied. The effect of operating conditions including current density and SiC content in the plating solution on the SiC incorporation in the deposited layer were studied. It was found that the volume percent of SiC particles in the composite layer increases with increasing current density and SiC content in the bath. The maximum SiC incorporation could be attained at optimum conditions; 60 g/1 of SiC particles in suspension, 5 A/dm2, pH 5 and 50 °C. Also the results reveal that the particle inclusion in the coating layer depends mainly on the treatment process (activation with PdCI2). The mechanical properties of the composite such as hardness and wear resistance were examined comparing with the uncoated substrate. The reinforced particles incorporated with Ni-matrix improve the hardness and wear resistance of coated Dl comparing with uncoated substrate.  相似文献   

4.
Textured NiO films have been grown, by thermal oxidation, on biaxially textured Ni substrates. The films have been characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The XRD results showed two texture components, cube texture (001)[100] and (111) with out of plane orientation only. SEM showed much inhomogeneity of grain size on the sample surface. Analysis by EBSD revealed that coarse grained regions were cube textured and fine grained regions were <111> fibre textured. The ability to correlate textural and microstructural data is crucial to the optimization of textured NiO films for use in coated conductor technology.  相似文献   

5.
J. Tan  T. Yu  B. Xu  Q. Yao 《Tribology Letters》2006,21(2):107-111
This paper investigates the microstructure and wear resistance of nickel–carbon nanotube (CNT) composite coating deposited by brush plating technique. The Ni/CNT coating deposited with a pulse current source has less porosity, higher hardness and higher wear resistance than that with a DC source. CNTs greatly improve the coating performance. The wear mechanism is mainly the smearing of the Ni/CNTs coatings, instead of the fracture for the Ni coatings.  相似文献   

6.
In this study, nickel-doped diamond-like carbon (Ni-DLC) thin films were deposited on silicon (Si) substrates using a magnetron cosputtering system by varying DC power density applied to a Ni target at a fixed DC power density applied to a carbon (C) target. Their tribological properties were systematically investigated using a ball-on-disc microtribometer. The tribological results showed that increasing the DC power density applied to the Ni target more than 0.49 W/cm2 significantly increased the friction and wear of the Ni-DLC films due to the degraded sp3-bonded cross-linking structures of the films. However, the much lower friction and wear of the Ni-DLC-coated Si samples than those of the uncoated Si sample implied that the Ni-DLC films could effectively prevent their Si substrates from wear. It could be concluded that the Ni-DLC films could be used as high wear-resistant coatings for micromold applications because their tribological properties were significantly influenced by the DC power density applied to the Ni target.  相似文献   

7.
Influences of microstructural and textural properties of friction stir processing (FSP) on dry reciprocating wear properties of AISI D2 tool steel are investigated in this study. The mechanical improvement is attributed not only to the homogenous distribution of very small carbides in a refined matrix, but also to significant development of textures during FSP. The excellent wear resistance is ascribed to nanohardness enhancement of the FSPed steel. Dominant shear components of {111} 〈110〉 and {112} 〈111〉 with the lowest Taylor׳s factor and the high density of close-packed planes formation significantly enhance the wear resistance of FSPed sample at 500 rpm.  相似文献   

8.
Ni/carbon nanotube (Ni/CNTs) composite coatings were deposited on carbon steel plate by electroless deposition. The friction and wear properties were examined under dry sliding conditions using the ball-on-disk configuration. For reference, carbon steel plate was coated with Ni, Ni/SiC and Ni/graphite. The results show that the Ni/CNT coating has a microhardness value of 865 Hv, greater than for SiC reinforced composite deposits. The Ni/CNTs composite coating possesses not only a higher wear resistance but also a lower friction coefficient, resulting from their improved mechanical characteristics and the unique topological structure of the hollow nanotubes.  相似文献   

9.
研究了镀液Si3N4浓度,阴极电流密度、pH值、温度和搅拌方式等工艺参数对Ni—Si3N4复合镀层微粒含量和镀层硬度的影响,在盘销摩擦磨损实验机上对镀层进行了磨损实验。通过实验确定了Ni-Si3N4复合电镀的最佳工艺。结果表明:随着Si3N4共析量的增多复合镀层硬度提高,耐磨性增强;在浸油润滑的条件下,复合镀层的摩擦因数低于纯镍镀层,复合镀层的磨损量小于普通镀镍层。磨痕表面观察表明复合镀层的磨损以磨料磨损为主。  相似文献   

10.
The micromechanical integrity of a ceramic plasma sprayed (PS) coating is determined by the size and distribution of the defects found in the coating, such as porosity, the inter-lamellar microcrack density, the intra-lamellar microcrack density as well as the lamellar, or splat, dimensions. In this work, several micromechanical tests were used to advance our understanding of the relationships between the different microstructural parameters found in PS ceramic coatings. The tests included depth sensing indentation, micro and macrohardness testing, and controlled scratch testing. Abrasive and erosive wear tests were performed on the same set of coatings, including plasma sprayed alumina and chromia, as well as sintered alumina as a reference material. The best correlations were found between the material hardness (H), the level of porosity (P) and the abrasive wear volume (W). Knoop hardness measurements provided the best correlation with wear data, followed by scratch hardness and Vickers hardness. An exponential function of the type W=k/Hn was found, where k and n are constants. A similar function describes the correlation of wear volume with the elastic modulus of the coating. Fracture toughness could only be correlated with wear volume when combined with hardness in a function of the type W=k/H0.5Kc0.5. The incorporation into this function of a “microstructural factor” M=Pn improves the correlation.  相似文献   

11.
An experimental study of wear characteristics of electroless Ni–10% P coating sliding against hard AISI 52100 steel pin is investigated. Experiments are carried out at room and 550°C temperatures. Heat treatment effects on tribological behavior of this coating are studied. The wear surface and the microstructure of the coatings are analyzed using optical microscopy, scanning electron microscopy, energy dispersion analysis X-ray, and microhardness testing equipment. It is observed that the forming of continuous oxide film on contacting surfaces of pin and disk improves wear resistance and decreases friction coefficient of the Ni–10% P coating. The results indicate that the wear resistance of electroless Ni–10% P coating has improved with heat treatment at room temperature wear test, but it reverses in the wear test at 550°C. In addition, specimens without heat treatment have the highest wear resistance and the lowest friction for wear tests at elevated temperatures.  相似文献   

12.
Ni-P-Cr2O3化学复合镀层耐磨性的研究   总被引:2,自引:0,他引:2  
研究了热处理对Ni-P-Cr2O3化学复合镀层组织结构、硬度及耐磨性的影响,并与Ni-P镀层作了对比。结果表明,镀层的摩损规律与硬度变化规律不同,采用正确的热处理工艺,可使镀层的硬度及耐磨性显著改善。  相似文献   

13.
High‐temperature‐resistant self‐lubricating coatings are needed in space vehicles for components that operate at high temperatures and/or under vacuum. Thick composite lubricant coatings containing quasicrystalline alloys as the hard phase for wear resistance can be deposited by a thermal spray technique. The coatings also contain lubricating materials (silver and BaF2 CaF2 eutectic) and NiCr as the tough component. This paper describes the vacuum tribological properties of TH103, a coating of this type, with a very good microstructural quality. The coating was deposited by high‐velocity oxygen fuel spraying and tested under vacuum using a pin‐on‐disc tribometer. Different loads, linear speeds, and pin materials were studied. The pin scars and disc wear tracks were characterised using a combination of scanning electron microscopy and energy dispersive spectrometry. A minimum mean steady friction coefficient of 0.32 was obtained when employing an X750 Ni superalloy pin in vacuum conditions under 10 N load and 15 cm/s linear speed, showing moderate wear of the disc and low wear of the pin.  相似文献   

14.

Six kinds of Ni60 alloy coatings with different percentage of Y2O3 were prepared by laser cladding. A metallurgical microscope was used to analyze the morphology of the cladding layer. Scanning electron microscopy and EDS energy spectrum analysis were used to characterize the microstructure and element segregation of the cladding layer. A Vickers microhardness tester was used to measure the hardness of the cladding layer. Finally, a friction and wear tester established the friction and wear properties of the cladding layer. The study results show that Y2O3 can significantly reduce the height of the cladding layer and increase the width of the cladding layer; it can also improve the structure refinement and element segregation of the cladding layer. The microhardness of the cladding layer is significantly improved compared to the Ni60 alloy coating without Y2O3, thereby enhancing the wear resistance of the coating.

  相似文献   

15.
Aromatic thermosetting polyester (ATSP)- and polytetrafluoroethylene (PTFE)-blended composites have been shown to exhibit improved tribological performance with low wear and low friction. In this article, pure ATSP films were coated on aluminum substrates and tested as a potential protective tribological coating. The tribological performance of this coating was tested against steel, using pure sliding sphere-on-disk experiments. A fluoroadditive powder (solid lubricant) was also added to further enhance the ATSP film wear and friction properties. For comparison, a commercially available PTFE-based coating was tested under the same conditions. Results show that the ATSP/fluoroadditive film has comparable coefficient of friction to the commercial coating, but significantly lower wear. Surface analysis techniques were employed to investigate the low-friction and low-wear mechanisms seen with the ATSP/fluoroadditive. Specifically TOF-SIMS depth-profiling showed that there is a high density of fluorine element within the wear track and penetrates well below the surface of the wear track.  相似文献   

16.
In this study, a block-on-ring wear tester was employed to investigate the tribocorrosion behavior of the electrodeposited Ni–W coating. Columnar grains embedded with lamellar and nanocrystalline microstructure were found in the fabricated Ni–W coating. The passivation of the Ni–W alloy was observed in the potentiodynamic polarization curve measured in 5 wt% NaCl solution. The result showed that with the raise of the applied overpotential, both the wear rate and the surface W-content of the coating increased. On the contrary, the accompanying coefficient of friction decreased with the potential. Small pitting and cracking occurred on the tested specimen. This microcracking structure was also observed in the corroded zone of the Ni–W coating by using TEM microscopy. A further XPS analysis determined the corrosion film was composed of Ni(OH)2, NiO, and WO3 on the corroded surface. The formation of this porous corrosion film at high overpotential was found to cause an accelerated weight loss and thereby, the interaction between wear and corrosion, of the Ni–W coating under tribocorrosion.  相似文献   

17.
The effect of the pressure of the nitrogen atmosphere during the formation of vacuum arc nitride coatings based on high entropy alloys of the Ti-Zr-Hf-V-Nb-Ta system on their structure, hardness, and tribotechnical characteristics is considered. It is shown that strong nitride-forming components lead to the dependence of the structural state and properties on the pressure of the nitrogen atmosphere during coating deposition. Deposition at a nitrogen pressure of 0.4 Pa results in the formation of a texture with the [111] axis when the applied bias potential is ?70 V and when the bias potential is equal to ?150 V the textural structure is biaxial ([111] and [110]) textures and high value of hardness of 51 GPa Along with that the highest value of wear resistance (under oxidizing-mechanical wear) is inherent to coatings formed under the pressure of nitrogen of 0.09 Pa. The strongest microdeformation of coating crystallites corresponds to this pressure.  相似文献   

18.
Carbon nanotubes (CNT) have received considerable interest in many industries, but composite coatings of CNTs have not yet been sufficiently developed for use in biomedical implants. This investigation elucidates the wear and corrosion behavior of electroplated Ni/CNT composite coatings on Ti–6Al–4V alloy in Hanks’ solution. Experimental results indicate that the CNTs in an electroplated Ni/CNT composite coating increase its hardness to 98.5% higher than that of a pure Ni coating. Additionally, an Ni/CNT composite coating can form stable and dense passive film, which significantly improves wear and corrosion in Hanks′ solution.  相似文献   

19.
通过模拟双相钢的热镀锌退火处理,研究了钢的组织和织构演变。结果表明:冷轧后试验钢加热到630℃时,在变形铁素体晶界附近出现少量再结晶晶核,当加热温度升高至690℃时,变形组织已基本消失,再结晶过程基本完成;在再结晶过程中析出的细小弥散TiC、NbC相对{111}织构的形核具有促进作用,阻碍了不利织构的形核,从而使得γ织构密度增强,α取向线上的{001}〈110〉至{112}〈110〉范围内的织构密度减弱,甚至消失;在再结晶晶核长大阶段,TiC、NbC相对{111}织构的长大具有阻碍作用,使得{001}〈110〉织构密度升高。  相似文献   

20.
The present contribution reports the tribological properties of Ni–WC composite coatings, electrodeposited on steel substrate. Commercial WC particles with an average size of 5 μm were codeposited with Ni on a mild steel substrate using a Watts bath at 50°C. The effect of plating variables on deposition behavior was studied. The amount of WC in the deposited layer decreased and plating efficiency increased with an increase in current density from 0.1 to 0.3 A/cm2. The tribological properties of the coatings were studied using a small amplitude reciprocating friction wear tester. The addition of WC in Ni increases the microhardness of the electrodeposited coatings. An important result is that the presence of embedded WC particles in the electrodeposited coatings results in a much lower coefficient of friction (COF) of 0.34, when compared with pure Ni (COF 0.62) and mild steel (COF 0.54).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号