首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 在分析连续混配撬液添泵系统工作特点的基础上,选择负载敏感液压系统作为其液压动力系统。为验证连续混配撬负载敏感液压系统性能,利用AMESim仿真软件搭建连续混配撬液添泵液压系统仿真模型,得到泵出口压力、泵输出流量及功率变化曲线。结果表明:泵输出流量稳定时,泵出口压力与各负载中最大压力的差值为负载敏感阀的设定压力;流量按需分配,在泵最大流量允许范围内,泵输出流量始终随着系统所需流量的变化而变化;负载敏感泵输出功率始终与负载所需功率相匹配,系统具有无溢流损失、节能等优点。  相似文献   

2.
为解决负载匹配,以及缓解支架回撤吊车应用过程中存在的能耗高、效率低和系统温度高等问题,基于负载敏感变量泵对其液压系统进行设计及仿真分析。该液压系统主要由负载敏感变量泵、流量补偿阀、负载敏感阀、梭阀和液压缸等组成。在工作过程中,负载敏感变量泵通过梭阀及负载敏感阀感知系统负载力而向系统提供所需流量。基于AMESim对该液压系统和变量泵进行建模及仿真分析,得到液压缸压力、负载口流量变化和梭阀流量补偿以及变量泵压力、流量和斜盘倾角变化情况。结果表明:变量泵可根据负载所需压力和流量实时调整斜盘倾角大小,进而实现压力 流量补偿功能;负载压力和流量阶跃变化时,变量泵具有良好的动态补偿特性。  相似文献   

3.
荆琴 《机械》2011,38(12):12-14
传统注塑机液压系统的能耗很大,用负载敏感变量泵控制系统实现泵出口处的流量和压力与负载所需的流量和压力相适应,有望提高系统效率.负载敏感变量泵控制系统设计并建模完成后,用MATLAB/SIMULINK软件进行仿真,分析了在负载流量压力均无变化、压力不变流量变化、压力流量均有变化三种情况下的仿真结果,并分析了系统在各种情况...  相似文献   

4.
功率敏感泵的输出压力和流量可随负载变化,从而可使液压系统的效率大幅度提高。功率敏感泵的工作原理如图1所示。 负载敏感阀Ls与系统中可调节流阀组成调节器,限压阀Pc控制泵出口的绝对压力。 1. 压力适应过程。当负载压力PL发生变化时,节流阀的可变节流口面积A不变,节流阀两端压差由Ls阀调定,也近似不变,泵出口压力Pd随PL变化,同时泵的输出流量不变。 2. 流量适应过程。当改变节流阀节流口面积A时,泵出口压力发生变化,Ls阀阀芯移动,引起变量活塞移动,从而使泵的输出流量变化。 在实际工况下,泵的输出流量和压力与负载相…  相似文献   

5.
针对负载敏感系统主阀瞬时启闭出现的液压冲击问题,提出在泵出口处使用防冲击阀来削减系统冲击的方法。采用AMESim建立了负载敏感液压系统防冲击的仿真模型,分析了在不同系统压力、流量、管道长度和主阀关闭时对系统的冲击影响。结果表明:系统冲击与负载压力无关,与主阀关闭时间、流量和管道长度有关。主阀关闭时间大于900 ms系统压力冲击基本消失;系统冲击压力随着流量的增加而不断升高,采用防冲击阀可有效削减系统冲击。  相似文献   

6.
为提高现有负载敏感系统动态和能耗特性,提出一种基于流量前馈与压力反馈复合控制的电液负载敏感系统。该系统通过负载实时流量需求来前馈控制变量泵斜盘摆角,并结合压力裕度反馈控制对泵排量进行调节,具有响应速度快,稳定裕度高和压力裕度低等特点。以现有压力反馈型和流量前馈型电液负载敏感系统为对比研究对象,建立系统数学模型,并在响应速度、阻尼性能等方面进行对比理论分析,还基于2 t液压挖掘机的试验平台进行对比研究。研究结果表明,相比现有压力反馈型负载敏感系统,所提出的系统具有较高的响应速度和阻尼性能,并且可减小压力裕度目标值以降低系统能耗;此外,所提出的系统通过压力闭环实现供需流量动态匹配,从而避免了由流量过匹配造成的压力冲击和能量损失。  相似文献   

7.
新型负载敏感系统工作原理及其应用   总被引:1,自引:0,他引:1  
负载敏感系统具有很好的经济型、可靠性和先进性,是一种广泛应用于工程机械的的液压系统。该文主要介绍了负载敏感液压系统的基本原理及其四大子系统,着重介绍新型负载敏感泵和负载敏感多路阀的结构及工作过程,并对其进行试验研究,得到其具有良好的压力流量特性,最后指出负载敏感系统应用的主要场合及待改善的地方。  相似文献   

8.
舰船通过调距桨实现正车航行、倒车航行。建立舰船主推进调距桨装置的大流量负载敏感液压系统模型,分析结果表明:小螺距调距阶段,泵出口压力与负载压力相适应,不受负载压力变化的影响;稳距阶段,保持较小压力,可减少液压系统的功率损耗。  相似文献   

9.
分析了液压挖掘机基于与负载压力无关流量分配(LUDV)多路阀的电液流量匹配控制(EFMC)系统的控制原理,建立了EFMC系统的液压挖掘机虚拟样机模型,采用实时检测油缸速度信号的反馈闭环控制方法提高流量匹配的精度。分别建立液压挖掘机EFMC系统动力学模型与液压系统模型并根据其实际工况进行联合仿真,研究了挖掘作业过程动态特性及节能特性。与传统的基于LUDV的负载敏感系统实验结果进行对比,结果表明: EFMC系统与传统负载敏感系统相比,改善了系统的动态响应特性和稳定性,泵的压力裕度明显减小,提高了系统的节能性,反馈闭环控制系统动态响应特性也明显得到提高。研究方法可为进一步研究挖掘机的动态性、节能性、稳定性提供理论依据和参考。  相似文献   

10.
挖掘机电液流量匹配控制系统特性分析   总被引:2,自引:1,他引:1  
电液流量匹配控制系统采用电比例阀和电比例泵同步控制的方式,基本消除传统负载敏感系统中存在的泵滞后阀控现象,同时由于该系统无须进行压力闭环反馈控制,不用预设泵出口与最高负载之间的压力裕度,因此系统的动态性能和节能水平有很大的提高。以2 t挖掘机试验样机为研究对象,试验对比分析负载敏感系统和电液流量匹配控制系统的动态特性及能耗特性,设计阀前压力补偿型电液流量匹配控制系统的抗流量饱和控制器。试验表明,与负载敏感系统相比,电液流量匹配控制系统不仅弥补了负载敏感系统流量饱和时不能按比例分配流量的不足,而且泵与最高负载之间的压力裕度降低0.6~0.7 MPa,节能8%~10%,在提高系统动态性和节能性的同时,稳定性也得到明显增强。  相似文献   

11.
选择双液压泵串联的组装方式,可达到泵高速运转并获得高压力效果,充分减小回路的节流损失。该结构完成压力分级叠加,获得更大的液压系统动力源输出压力,采用此动力源能够满足高压力与大流量的液压系统使用要求,进一步通过仿真方式对其脉动和能耗优化展开分析。结果表明:当负载增大后,串联泵控液压系统的流量脉动区间减小。串联泵控液压系统流量脉动随着负载增加变动不明显,表明本系统设计具有很好的稳定性。对电机转速进行调整后,串联泵控液压系统相对单泵系统的齿轮泵发生流量脉动显著降低;可使系统承受更高负载,使液压泵达到更低的输出流量;可以利用功率叠加的过程达到通过低功率电机获得大功率输出的目的。  相似文献   

12.
负载敏感技术广泛应用于工程机械领域,而实际使用中系统参数的调整及流量饱和现象一直为人们所关注。通过对负载敏感系统基本结构建模分析,得到了补偿阀弹簧压缩过程的负载敏感阀流量 压力关系曲线。基于负载敏感阀流量 压力关系,对负载敏感液压系统的工作原理进行分析,并着重对负载敏感系统的流量饱和现象展开研究,为工程机械负载敏感液压系统抗饱和设计提供理论指导。  相似文献   

13.
压力补偿变量泵的特点是当系统压力超过泵的设定值时,流量自动减小,它常用于需要限压和要求在小流量输出时仍保持系统压力的保压系统中。负载传感变量泵的最大特点是其输出的压力和流量始终与负载压力和流量相匹配,使功率损失减小到很低的程度。图1为定量泵、变量泵和负载传感变量泵用于同等工况液压系统中的功率分布比较图。不难看出,定量泵系统的功率损失是相  相似文献   

14.
该文旨在对盾构同步注浆进行改进设计,以达到提高注浆精确度,且节约能源的目的.在同步注浆系统中,采用了负载敏感变量泵液压系统,通过分析表明,由于负载敏感变量泵的负载敏感性,可以达到提高注浆压力与注浆量精确度的目的;由于负载敏感变量泵的负载敏感性,可以达到节约能源的目的.最后列举了负载敏感变量泵液压系统在类似系统中的成功应用,表明了其在盾构同步注浆系统中应用的可行性.  相似文献   

15.
负载敏感系统测试及特性分析   总被引:1,自引:0,他引:1  
负载敏感系统是液压系统节能控制的主要环节之一.对一具有负载敏感系统的挖掘机在不同工况、不同负载压差,以及不同操作动作下泵的出口压力、流量进行了测试,分析了负载敏感系统工作特性,提出了压差的设定值应随负载的大小按正比例调节,以提高系统对负载的跟随性并减少波动.在标准负载工况下,压差设定为1.7MPa时,系统工作比较理想.  相似文献   

16.
针对定量泵构建的全液压转向系统工作时传动效率低、压力和流量损失严重等问题,将负载敏感式变量泵技术应用到全液压转向系统中。对转向系统中转向器、优先阀及负载敏感式变量泵的结构进行了详细阐述;利用AMESim仿真软件对转向系统进行了建模;基于AMESim仿真模型对负载敏感式全液压转向系统进行了仿真分析。研究结果表明:转向器转速在30 r/min和40 r/min时,压力和流量输出相对稳定;优先阀对转向器可起到流量调节作用;负载敏感式变量泵倾斜角在20°内能够控制输出流量的大小;负载敏感式全液压转向系统能够最大限度地减少压力和流量损失,从而提高传动效率。  相似文献   

17.
根据液压旋耕机的工况特点,基于定流量阀后补偿负载敏感原理设计液压旋耕机的工作系统,分析该系统工作原理,采用AMESim平台搭建该工作装置负载敏感系统仿真模型,仿真分析该系统分别处于变负载工况、多路阀不同开口工况与流量饱和工况下的工作特性。由仿真可知,该负载敏感系统各执行机构所需流量主要取决于多路阀开口面积,与负载无关。且当系统发生流量饱和时,会根据多路阀前后压差按比例分配定量泵输出流量,使各执行机构独立地工作。证实了将负载敏感系统运用在旋耕机中,使旋耕机能够实现单泵驱动多个动作,实现升降液压缸与回转液压马达的复合动作,使其工作系统便于控制。  相似文献   

18.
针对负载敏感液压系统中流量控制主阀关闭过快导致的系统产生压力冲击的问题,利用AMESim软件建立了负载敏感系统压力冲击仿真模型,对冲击产生的原因进行仿真分析,探究系统流量、主阀关闭时间、负载压力等因素对系统压力冲击的影响。仿真结果表明:系统压力冲击与负载压力无关,与系统流量、主阀关闭时间有关,系统流量越大,主阀关闭时间越短,系统压力冲击值越大。  相似文献   

19.
针对传统大功率多泵液压阀控系统中由于泵源输出与负载流量需求不匹配,导致液压系统传动效率低下的问题,在数字泵PCM控制概念的基础上提出一种基于数字+模拟(D+A)组合控制多泵源液压系统。通过流量区域划分方法,给出该系统的构型原则,其中定量泵组排量比采用二进制编码,由1台变量泵补偿定量泵的阶跃流量差值;建立多泵源液压系统流量状态矩阵,通过求解得到泵组的控制信号;为了减少阶跃流量冲击对系统控制特性的影响,提出多泵源液压系统泵阀复合控制策略,并对该系统输出特性进行试验研究。试验结果表明在泵阀复合控制策略下,多泵源液压系统具有良好的动静态特性和节能效果。正弦位置跟随精度达到±0.1 mm,滞后约为100 ms;由于采用D+A组合流量控制和比例溢流阀压力控制,始终使多泵源液压系统输出的流量和压力分别高于负载所需要流量10 L/min和压力2 MPa,使该系统的溢流和节流损失大大降低。  相似文献   

20.
负载敏感控制系统因其主泵出口压力高于最高负载回路压力,导致节能率较低.针对这一问题,从阀前补偿负载敏感控制系统出发,结合阀后控制和先导控制思想,提出一种基于负载敏感的先导控制挖掘机液压系统.在保证与负载敏感控制系统同样优良的复合操纵性能前提下,利用先导控制压力来降低主泵出口压力,以提高系统节能率,并建立先导控制压力的数...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号