首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
This study established a method for isolating large numbers of high-purity osteocytes from high-density bone. Bone fragments derived from mice tibia and femurs were alternately digested with type I collagenase and EDTA nine times, and the digested cells and bone chips (BC) were cultured, digested, and passaged when cells were fully grown. The types of cells obtained were identified by morphology, viable cell counts, alkaline phosphatase staining, and biochemical activity analyses, and specific osteocyte and osteoblast markers were evaluated by quantitative real-time polymerase chain reaction. Our results showed that among the cells obtained from the third digestion (fractions 7–9) of wild mice tibias and femurs and the remaining BCs, 85%–90% of the cells were osteocytes. Moreover, their morphology was approximately one-tenth to one-fifth the size of osteoblasts, star-shaped or polygonal, with a dendritic structure, negative for alkaline phosphatase staining, and showed a high expression of dmp1 and sclerostin. Ninety percent of the cells in fractions 1–3 were osteoblasts, and were fusiform or polygonal shape. The activity of osteoblast-specific alkaline phosphatase and mRNA expression were high in this fraction, while the expression of osteocyte-specific dmp1 and sclerostin was not detected. In the second portion (fractions 4–6), a large number were osteoblasts, mixed with a small number of osteocytes, and had high alkaline phosphatase activity and osteocyte mRNA levels, a specific level of the osteocyte marker dmp1, and no sclerostin was detected. Osteocytes in daβcatot mice were also successfully isolated by this method, and we found that Wnt signaling increased the proliferation of these osteocytes. The proposed method can be used to culture osteocytes and osteoblasts of high purity and can be used for isolation and culture of these two kinds of cells from high-density bone, which provides an avenue for the study of osteocyte function in vitro.  相似文献   

3.
We have examined cellular events at the early stages of periosteal chondrogenesis and osteogenesis induced by bone fracture, using a well-standardized rib fracture model of the mouse. The initial cellular event was recognized as considerable proliferation in the deeper layer referred to as the "cambium layer" of the periosteum, as evidenced by numerous proliferating cell nuclear antigen-positive cells. The periosteal cartilage and bone were then regenerated directly from the region of the most-differentiated cell, i.e., mature osteoblasts of the cambium layer both close to and distant from the fracture site. Therefore, periosteal osteoblasts appeared to have the potential to differentiate into chondrogenic and osteoblastic lineages. CD31-positive blood vessels were uniformly localized along the periosteum that was regenerating cartilage and bone, being therefore indicative of less influence on the initiation of osteochondrogenesis. In contrast, however, the regenerated periosteal cartilage or bone extended from the cortical bones included dead or living osteocytes, respectively. Empty lacunae and lacunae embedded with amorphous materials were found close to the regenerated cartilage, while intact osteocytes persisted adjacent to the regenerated bone. The embedded lacunae with amorphous materials would render the tissue fluid, nutrients, oxygen, and several secretory factors such as dentin matrix protein-1 impossible to be delivered to the periosteal osteoblasts that interconnect osteocytes via gap junctions. Our study thus provides two major clues on initial cellular events in response to bone fracture: the potentiality of periosteal osteoblastic differentiation into a chondrogenic lineage, and a putative involvement of osteocytes in periosteal cartilage and bone regeneration.  相似文献   

4.
This study aimed to investigate the effect of hyaluronic acid (HA) on the expression of heat shock protein 70 (HSP70) in chondrocytes isolated from patients with osteoarthritis (OA) and Kashin-Beck disease (KBD). The chondrocytes were collected from OA and KBD patients, and chondrocytes isolated from patients of accident injuries were used as the control. The chondrocytes were treated with HA at different doses. HSP70 expression in chondrocytes at both mRNA and protein levels was tested by PCR and Western blot analysis. Compared with control, both mRNA and protein levels of HSP70 were higher in chondrocytes from KBD and OA. However, HA at the dose of 500 μg/ mL significantly inhibited HSP70 expression levels in both KBD and OA groups (P < 0.05). In conclusion, HSP70 is highly expressed in chondrocytes of patients of OA and KBD. HA intervention inhibits the upregulation of HSP70 in chondrocytes of OA and KBD patients and could be a promising agent for treatment of OA and KBD.  相似文献   

5.
The low‐shrink Silorane‐based composite could bond effectively to bone and showed the potential be used as a bone cement. Bone organ culture maintains the anatomical order, natural cell‐to‐cell and cell‐to‐matrix relationship. The purpose of this study was to evaluate the responses of bone cells to a Silorane‐based composite which was compared with a representative polymethyl methacrylate (PMMA) bone cement. The critical size defects were created through the parietal bones from one litter of mice. The paired bones were divided into two groups: Silorane‐based composite group and PMMA group. The prepared two groups of disks were put into the defects. The cultures were grown in vitro for 38 days and analyzed with microcomputed‐tomography, dissecting‐microscope, phase‐ contrast‐microscope, scanning‐electron‐microscopy, and energy‐ dispersive‐X‐ray. At the 10th day, the Silorane disk was almost fully covered by a sheet of cells but the cells hardly attached to the disk surface. The edge of the PMMA disk was covered by a sheet of cells and the migrated individual cells attached to the whole surface of the disk. At the 38th day, some cells attached to the exposed disk area of the Silorane disk while the formed tissues covered the whole surface of the PMMA disk. The collagen fibers, globular deposits and bone formation were visible in both groups. The Silorane‐based composite showed promise as a potential bone cement when compared with PMMA which is used in clinical orthopedics. However, the cell attachment to PMMA was evidently better than to Silorane‐based composite. Microsc. Res. Tech. 75:1176–1184, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerves fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Identification of the nerve-derived signaling molecules, capable of modulating cellular activities of the bone cells, facilitates a novel approach to study the biology of skeletal innervation. Many of the signaling molecules that may act as efferent agents on the bone cells fall into the category of neuropeptides. The present article reviews current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism, with a special interest to calcitonin gene-related peptide (CGRP)-containing nerves fibers. CGRP is abundantly distributed in bone via sensory nerves, especially in the epiphyseal trabecular bones. Its in vitro actions to the cultured osteoblasts and osteoclasts, together with its in vivo localization, strongly support the paradigm that the nervous system influences bone metabolism. In addition, CGRP is recently shown to be expressed endogenously by the osteoblasts. Transgenic mice with osteoblasts overexpressing CGRP are characterized by increased bone formation rate and enhanced bone volume, suggesting that CGRP indeed acts on bone metabolism not only via nervous route but also via autocrine loop. The current article also reviews the distribution of nerve fibers containing substance P (SP), another sensory nerve-specific neuropeptide, and tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine. The distinct effects of SP and catecholamines on the bone cells together with their in vivo influences manifested by experimental denervation studies suggest that the sensory and sympathetic nerves play important roles in bone metabolism.  相似文献   

7.
Bone is a complex natural material with a complex hierarchical multiscale organization, crucial to perform its functions. Ultrastructural analysis of bone is crucial for our understanding of cell to cell communication, the healthy or pathological composition of bone tissue, and its three-dimensional (3D) organization. A variety of techniques has been used to analyze bone tissue. This article describes a combined approach of optical, scanning electron, and transmission electron microscopy for the ultrastructural analysis of bone from the nanoscale to the macroscale, as illustrated by two pathological bone tissues. By following a top-down approach to investigate the multiscale organization of pathological bones, quantitative estimates were made in terms of calcium content, nearest neighbor distances of osteocytes, canaliculi diameter, ordering, and D-spacing of the collagen fibrils, and the orientation of intrafibrillar minerals which enable us to observe the fine structural details. We identify and discuss a series of two-dimensional (2D) and 3D imaging techniques that can be used to characterize bone tissue. By doing so we demonstrate that, while 2D imaging techniques provide comparable information from pathological bone tissues, significantly different structural details are observed upon analyzing the pathological bone tissues in 3D. Finally, particular attention is paid to sample preparation for and quantitative processing of data from electron microscopic analysis.  相似文献   

8.
Death of osteocytes is synonymous of bone death. Aseptic osteonecrosis of the femoral head is a lesion characterized by the death of osteocytes occurring after major vascular changes. The evolution may lead to hip osteoarthritis, which requires total hip arthroplasty in most cases. Evolution of aseptic osteonecrosis in four radiological stages is well known. We analyzed 24 femoral heads from patients with osteonecrosis or osteoarthritis, retrieved at the time of surgery for a hip arthroplasty. The aim of the study was to clearly identify the necrotic bone from the living bone in the histological samples. The femoral heads were sawed, and a large sample was harvested in the superior zone; it was stained en‐bloc with rhodamine dissolved in formalin to make the osteocytes fluorescent under UV light microscopy. Undecalcified sections, 7 μm thick, were obtained on a heavy‐duty microtome. A micrographic analysis using two UV excitation wavelengths visualized the living osteocytes (in green) and the bone matrix (in blue). A simple method to prepare combined images is described. In addition, the blocks can be analyzed by confocal microscopy to visualize more details. It is possible to identify at low magnification the osteocytes within the bone matrix and the osteonecrotic areas where osteocytes have disappeared. Identification of osteocytes showed that newly formed bone packets are laid on dead trabeculae in patients with aseptic osteonecrosis or with osteoarthritis. In the osteosclerotic areas, the enlarged trabeculae have a dead central core surrounded by recently apposed bone structure units.  相似文献   

9.
The ability of bone repair scaffolds to form bone is traditionally evaluated using cell culture and animal experiments. Mouse calvarial organ culture maintains the natural cell‐to‐cell and cell‐to‐matrix relationships as well as the anatomical order, and this model has been used to study the biological behavior of intramembranous bones. The aim of this study was to evaluate the potential of mouse calvarial organ culture to be used as an in vitro model to study the bone regenerative ability of bone repair polymer scaffolds. Critical size defects (CSD) were created in the parietal bones. Electrospun poly(ε‐caprolactone) scaffolds were placed into one group of defects. The remaining defects served as a control. The bones were cultured for 38 days and analyzed with μCT, phase‐contrast microscopy, dissecting microscopy, scanning electron microscopy, and energy‐dispersive X‐ray analyses. This organ culture technique is easily available and could permit researchers to quickly establish a valuable database of candidate bone repair scaffolds. Microsc. Res. Tech. 77:1037–1043, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
To facilitate the repair of articular cartilage defects, autologous mesenchymal cells from bone marrow or periosteum were transplanted in a rabbit model. Two weeks after the transplantation of the mesenchymal cells, the whole area of the original defect was occupied by cartilage. From the deep area of the reparative cartilage, which contacted with host bone, chondrocytes became hypertrophic and the invasion of bone with vasculature started, until the replacement reached the natural junction of the host cartilage and the subchondral bone about 4 weeks after transplantation. Twelve weeks after the transplantation, the repair cartilage in the defect became a little thinner than the adjacent normal cartilage, which became a little thinner 24 weeks after the transplantation (the longest observation period in the study). Large, full-thickness defects of the weight-bearing region of the articular cartilage were repaired with hyaline-like cartilage after implantation of autologous mesenchymal cells. The repair process by mesenchymal cell transplantation was explained as follows: The donor transplanted cell differentiated into cartilage and the defects were completely filled with cartilage. Then, mesenchymal cells that entered the chondrogenic lineage rapidly progressed through this lineage to the hypertrophic state, which was then the target for erosion and vascular invasion. Although this vasculature and the newly formed bone were considered to be host-derived, there was no evidence to that effect. To prove this, suitable experimental marking of these donor cells is needed. In the case of chondrocyte transplantation, the repair cartilage maintained its thickness to the full depth of the original defect; the tissue derived from the implanted chondrocytes was not invaded by vessels or replaced by subchondral bone.  相似文献   

11.
The limited bioactivity of scaffold materials is an important factor that restricts the development of bone tissue engineering. Wnt3a activates the classic Wnt/β-catenin signaling pathway which effects bone growth and development by the accumulation of β-catenin in the nucleus. In this study, we fabricated 3D printed PCL scaffold with Wnt3a-induced murine bone marrow-derived stromal cell line ST2 decellularized matrix (Wnt3a-ST2-dCM-PCL) and ST2 decellularized matrix (ST2-dCM-PCL) by freeze-thaw cycle and DNase decellularization treatment which efficiently decellularized >90% DNA while preserved most protein. Compared to ST2-dCM-PCL, Wnt3a-ST2-dCM-PCL significantly enhanced newly-seeded ST2 proliferation, osteogenic differentiation and upregulated osteogenic marker genes alkaline phosphatase (Alp), Runx2, type I collagen (Col 1) and osteocalcin (Ocn) mRNA expression. After 14 days of osteogenic induction, Wnt3a-ST2-dCM-PCL promoted ST2 mineralization. These results demonstrated that Wnt3a-induced ST2 decellularized matrix improve scaffold materials’ osteoinductivity and osteoconductivity.  相似文献   

12.
Progenitor cells play an important biological role in tooth and bone formation, and previous analyses during bone and dentine induction have indicated that they may be a good alternative for tissue engineering. Thus, to clarify the influence of the microenvironment on protein and gene expression, MDPC23 cells (mouse dental papilla cell line) and KUSA/A1 cells (bone marrow stromal cell line) were used, both in vitro cell culture and in intra-abdominal diffusion chambers implanted in 4-week-old male immunodefficient mice (SCID mice). Our results indicate that KUSA/A1 cells differentiated into osteoblast-like cells and induced bone tissue inside the chamber, whereas, MDPC-23 showed odontoblast-like characteristics but with a low ability to induce dentin formation. This study shows that MDPC-23 cells are especial cells, which possess morphological and functional characteristics of odontoblast-like cells expressing dentin sialophosphoprotein in vivo. In contrast, dentin sialophosphoprotein gene and protein expression was not detected in both cell lines in vitro. The intra-abdominal diffusion chamber appears as an interesting experimental model for studying phenotypic expression of dental pulp cells in vivo.  相似文献   

13.
Transplantation of osteochondral autograft is widely used as a therapeutic strategy for the defect of articular cartilage. In the repair process, although underlying subchondral bone becomes necrotic and then is followed by bone reconstruction, the fate of graft and host cells during remodeling of underlying subchondral bone has not been elucidated. The objectives of this study were to establish a method to follow graft and host cells after transplantation of osteochondral autograft, and to elucidate the fate of both graft and host cells during remodeling of underlying subchondral bone. For these purposes, autologous transplantation models employing transgenic rats and wild-type rats, which were genetically identical to each other except for transgenes, were used. Two transplantation models were designed so that either the graft or the host cells had transgenes. Model I: transgenic rats were the donor, and wild-type rats were the recipient; model II: conversely, wild-type rats were the donor, and transgenic rats were the recipient. The grafted bone marrow cells and osteocytes in the trabeculae survived in the graft at 3 weeks after transplantation. Invasion of the host bone marrow cells into the graft was also found. Thus, bone marrow cells in the host as well as both bone marrow cells and osteocytes in the graft could potentially participate in the remodeling of underlying subchondral bone. Furthermore, the interface between graft and host was consisted with both graft and host derived cells. Since new bone formation was found in this space, both graft and host cells could have the potential to contribute to remodeling of underlying subchondral bone. The two models of the transplantations using the transgenic rats were found to be beneficial in following graft cells as well as host cells and in understanding their function on healing after autologous transplantation.  相似文献   

14.
15.
We analyzed the effect of glucocorticoid on bone regeneration after bone marrow ablation in tibiae of 8-week-old rats. Methylprednisolone sodium succinate (MPSS) was injected intramuscularly at a dose of 100 mg/kg/day for 3 days. Tibiae on days 1, 3, 5, 7, 10, 12, and 14 after ablation were subjected to tartrate-resistant acid phosphatase staining, immunohistochemistry, in situ hybridization, and transmission electron microscopy (TEM), and measurement of the volume of newly-formed bone and the osteoclast number. MPSS significantly decreased the newly-formed bone volume on day 7, and immature bone still remained on day 10 in the MPSS-treated group. The volume of this bone was significantly higher than that in the control group. However, there were no differences between the groups in the osteoclast number, the expression of mRNAs for osteoblast differentiation markers, and alkaline phosphatase and cathepsin K judged by immunohistochemistry. TEM findings showed no difference in the form of osteoblasts, whereas osteoclasts in the MPSS-treated group had less developed ruffled borders, compared to those in the control group. These results suggest that MPSS treatment affects neither the differentiation nor the shape of osteoblasts, and does not change the osteoclast number or the cathepsin K level. However, high dose MPSS inhibits both bone formation and resorption during bone regeneration after rat tibial bone marrow ablation, and inhibits ruffled border formation in osteoclasts. These data will be useful to develop bone regenerative therapies for bone diseases due to high dose steroid administration.  相似文献   

16.
17.
YUNG-FU CHANG 《Biocell》2023,47(2):283-287
Areca nut is used worldwide as a hallucinogenic addicting drug along the tropical belt. Arecoline, a toxic compound, is the most important alkaloid in areca nuts. The adverse effects of oral uptake and chewing of areca nut are well known. For example, the possibility of cancer caused by chewing areca nuts is widely discussed. Chewing areca nut has other adverse effects on other organs, including abnormal cell differentiation, oral cancer, and several other diseases. The use of areca nut is also associated with low birthweight. Skeletal musculature is the largest organ in the body and is attached to the bones. During embryo development, the differentiation of bone and muscle cells is critical. In this article, we reviewed the effects of areca nut and arecoline on embryonic cell differentiation, particularly osteoblasts, myoblasts, and fibroblasts.  相似文献   

18.
BACKGROUND: Zinc (Zn) has a potent stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. PURPOSE: The effect of Zn on the function of matrix vesicles (MVs) remains controversial. The purpose of this study was to investigate the effect of Zn on alkaline phosphatase (ALP) activity of osteoblasts and in the initial biological MVs‐mediated mineral deposition. STUDY DESIGN: Osteoblasts were treated with varying concentrations of Zn dissolved in culture medium. After three, five, and seven days of culture, ALP activity was assayed. For the detection of a low level of calcium concentration in MVs, X‐ray fluorescence (XRF) analyses were applied. The effect of Zn for the transformation of calcium phosphate was analyzed using a scanning electron microscope fitted with an energy dispersive X‐ray microanalysis (EDX) system. RESULTS: The ALP activity of osteoblasts in culture medium supplemented with 1 × 10?5M of Zn was significantly increased at both five and seven days. XRF data demonstrated higher levels of calcium concentration over time in the Zn‐supplemented group. EDX data showed that mineral deposits beginning on day 3 were transformed from whitlockite to calcium phosphate near hydroxyapatite, and that Zn accelerated this transformation. CONCLUSIONS: The proper concentration of Zn increased the ALP activity of osteoblasts after five and seven days of incubation. The present XRF and EDX data suggest that the increase of mineral deposition with Zn exposure for one to five days might be mediated by the activation of ALP and calcium‐binding proteins. Microsc. Res. Tech., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
In this study, we have analyzed the viability and cell growth, as well as, the mineralization of extracellular matrix (ECM) by alizarin red and von Kossa staining of calvaria‐derived osteogenic cultures, treated with TGF‐β1 alone or associated with Dex comparing with acid ascorbic (AA) + β‐glicerophosphate (βGP) (positive mineralization control). The expression of the noncollagenous proteins bone sialoprotein (BSP), osteopontin (OPN) and fibronectin (FN) were evaluated by indirect immunofluorescence. In addition, the main ultrastructural morphological findings were assessed by transmission electron microscopy. Osteogenic cells were isolated of calvaria bone from newborn (2‐day‐old) Wistar rats were treated with TGF‐β1 alone or with dexamethasone for 7, 10, and 14 days. As positive mineralization control, the cells were supplemented only with AA+ βGP. As negative control, the cells were cultured with basal medium (α‐MEM + 10%FBS + 1%gentamicin). The treatment with TGF‐β1, even when combined with Dex, decreased the viability and cell growth when compared with the positive control. Osteoblastic cell cultures were positive to alizarin red and von Kossa stainings after AA + βGP and Dex alone treatments. Positive immunoreaction was found for BSP, OPN and FN in all studied treatments. Otherwise, when the cell cultures were supplemented with TGF‐β1 and TGF‐β1 + Dex, no mineralization was observed in any of the studied periods. These present findings suggest that TGF‐β1, in the studied in vitro doses, inhibits the proliferation and differentiation of osteoblastic cells by impairment of nodule formation.  相似文献   

20.
The present study describes the morphological characteristics of the camel heart Ossa cordis, and os aorta using computed tomography soft tissue window (CT) alongside 3D render volume reconstructions and light microscopy. The current study techniques demonstrated the Ossa cordis and os aorta in the cardiac window with more precision than the black and white (ghost), and angiography images. Transverse and sagittal CT images additionally demonstrated the presence of Ossa cordis and os aorta. This study is the first to record two small Ossa cordis sinistrum and one os aorta in the camel heart, in addition to the more commonly observed singular, large, os cordis dextrum. The os cordis dextrum was always located in the upper part of the interventricular septum, near to its junction with the atrium, forming an elongated rectangular shape when observed transversally. The wider cranial part was composed from bone, whereas the caudal aspect was narrow and contained both bone and cartilage. Light microscopy identified that the os cordis dextrum consisted of trabecular bone, marrow spaces, and hyaline cartilage. Two Ossa cordis sinistrum were detected on the left side of the heart, one in the right fibrous ring and another in the interventricular septum, microscopy showed that both contained only trabecular bone with osteocytes, osteoblasts, and osteoclasts. At the level of ascending aorta, there was also trabecular bone containing osteocytes, an os aorta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号