首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
This paper presents a sensor system using motor current sensors, voltage sensors, accelerator and acoustic emission sensor for grinding burn feature extraction. The new method, Hilbert–Huang transform (HHT), was applied as a signal processing tool to digest the raw acoustic emission and accelerator signals and to extract grinding burn features. A filtering criterion using average energy percentage of IMF components was proposed in order to simplify the calculation. Five IMF components were selected based on this criterion and their marginal spectra were calculated. The marginal spectral amplitude of the first three IMF components and the spectral centroid of the last two IMF components clearly reflected the occurrence of grinding burn. Results indicate that the application of HHT to acoustic emission signals in grinding burn detection is of great potential. Besides, the wheel rotation speed can be successfully uncovered through the intrinsic mode function (IMF), which verified the physical meaning of the EMD method.  相似文献   

2.
Wear detection in gear system using Hilbert-Huang transform   总被引:1,自引:0,他引:1  
Fourier methods are not generally an appropriate approach in the investigation of faults signals with transient components. This work presents the application of a new signal processing technique, the Hilbert-Huang transform and its marginal spectrum, in analysis of vibration signals and faults diagnosis of gear. The Empirical mode decomposition (EMD), Hilbert-Huang transform (HHT) and marginal spectrum are introduced. Firstly, the vibration signals are separated into several intrinsic mode functions (IMFs) using EMD. Then the marginal spectrum of each IMF can be obtained. According to the marginal spectrum, the wear fault of the gear can be detected and faults patterns can be identified. The results show that the proposed method may provide not only an increase in the spectral resolution but also reliability for the faults diagnosis of the gear.  相似文献   

3.
用HHT变换处理离心压缩机喘振试验数据   总被引:3,自引:0,他引:3  
张勇  张春梅 《流体机械》2012,40(1):10-12
为了提取离心压缩机早期喘振特征频率,在对信号进行小波包降噪抽样后,利用Hilbert-Huang变换(HHT)进行信号特征提取。通过经验模态分解(EMD)得到若干固有模态函数(IMF),然后利用相关系数法对IMF进行筛选。通过趋势项和原始信号对比可知压缩机流量减少是造成振动的主因,最后对有效IMF信号进行Hilbert变换,并求其边际谱,提取压缩机喘振频率为7.3Hz。  相似文献   

4.
为了准确识别水工结构的损伤,提出一种变分模态分解(variational mode decomposition,简称VMD)和Hilbert-Huang变换(Hilbert-Huang transform,简称HHT)边际谱相结合的水工结构损伤诊断方法。首先,采用联合的小波阈值和经验模态分解(empirical mode decomposition,简称EMD)降噪方法对原始信号进行降噪,减小环境噪声对结构损伤特征信息的干扰;其次,运用方差贡献率数据融合算法对降噪后各测点信号进行动态融合,提取结构完整的振动特性信息;然后,采用VMD方法将动态融合信号分解为一系列固态模量(intrinsic mode function,简称IMF),对各IMF分量进行Hilbert变换,求出融合信号的边际谱;最后,在VMD边际谱的基础上提取一种新的损伤特征向量-损伤灵敏指数,将其与马氏距离相结合对水工结构的损伤类型进行分类,并将该方法应用于悬臂梁模型试验。结果表明:该方法能够有效提取水工结构的损伤特性,准确识别水工结构的损伤和运行状态,为水工结构的安全运行提供了基础。  相似文献   

5.
Gear vibration signals always display non-stationary behavior. HHT (Hilbert–Huang transform) is a method for adaptive analysis of non-linear and non-stationary signals, but it can only distinguish conspicuous faults. SOM (self-organizing feature map) neural network is a network learning with no instructors which has self-adaptive and self-learning features and can compensate for the disadvantage of HHT. This paper proposed a new gear fault identification method based on HHT and SOM neural network. Firstly, the frequency families of gear vibration signals were separated effectively by EMD (empirical mode decomposition). Then Hilbert spectrum and Hilbert marginal spectrum were obtained by Hilbert transform of IMFs (intrinsic mode functions). The amplitude changes of gear vibration signals along with time and frequency had been displayed respectively. After HHT, the energy percentage of the first six IMFs were chosen as input vectors of SOM neural network for fault classification. The analysis results showed that the fault features of these signals can be accurately extracted and distinguished with the proposed approach.  相似文献   

6.
Extracting the underlying trends is an important tool for the analysis of signals. This paper presents a novel methodology for extracting the underlying trends of signals based on the separations of consecutive empirical mode decomposition (EMD) components in the Hilbert marginal spectrum. A signal is initially represented as a sum of intrinsic mode functions (IMFs) obtained via the EMD. The Hilbert marginal spectrum of each IMF is then calculated. The separations of two consecutive IMFs in the Hilbert marginal spectrum are estimated based on their correlation coefficients. The group of the last several IMFs in which the IMFs are close to each other in the Hilbert marginal spectrum will be used for the representation of the underlying trend of the signal. Extensive experimental results are presented to illustrate the rationale and the effectiveness of the proposed method.  相似文献   

7.
The Hilbert–Huang transform (HHT) has proven to be a promising tool for the analysis of non-stationary signals commonly occurred in industrial machines. However, in practice, multi-frequency intrinsic mode functions (IMFs) and pseudo IMFs are likely generated and lead to grossly erroneous or even completely meaningless instantaneous frequencies, which raise difficulties in interpreting signal features by the HHT spectrum. To enhance the time–frequency resolution of the traditional HHT, an improved HHT is proposed in this study. By constructing a bank of partially overlapping bandpass filters, a series of filtered signals are obtained at first. Then a subset of filtered signals, each associated with certain energy-dominated components, are selected based on the maximal-spectral kurtosis–minimal-redundancy criterion and the information-related coefficient, and further decomposed by empirical mode decomposition to extract sets of IMFs. Furthermore, IMF selection scheme is applied to select the relevant IMFs on which the HHT spectrum is constructed. The novelty of this method is that the HHT spectrum is just constructed with the relevant, almost monochromatic IMFs rather than with the IMFs possibly with multiple frequency components or with pseudo components. The results on the simulated data, test rig data, and industrial gearbox data show that the proposed method is superior to the traditional HHT in feature extraction and can produce a more accurate time–frequency distribution for the inspected signal.  相似文献   

8.
The end effects of Hilbert–Huang transform are represented in two aspects. On the one hand, the end effects occur when the signal is decomposed by empirical mode decomposition (EMD) method. On the other hand, the end effects occur again while the Hilbert transforms are applied to the intrinsic mode functions (IMFs). To restrain the end effects of Hilbert–Huang transform, the support vector regression machines are used to predict the signals before the signal is decomposed by EMD method, thus the end effects could be restrained effectively and the IMFs with certain physical sense could be obtained. For the same purpose, the support vector regression machines are used again to predict the IMFs before the Hilbert transform of the IMFs, thus the accurate instantaneous frequencies and amplitudes could be obtained and the corresponding Hilbert spectrum with physical sense could be acquired. The analysis results from the simulation and experimental signals demonstrate that the end effects of Hilbert–Huang transform could be resolved effectively by the time series forecasting method based on support vector regression machines which is superior to that based on neural networks.  相似文献   

9.
为研究弹载部件在导弹发射过程中的冲击响应及冲击信号的传递特性,进行了基于希尔伯特-黄变换(Hilbert-Huang transform,简称HHT)的导弹发射冲击时频谱分析。由于经验模态分解(empirical mode decomposition,简称EMD)结果易受白噪声的影响,研究了总体经验模态分解(ensemble empirical mode decomposition,简称EEMD)技术。以弹体不同位置的实测冲击信号为对象,应用HHT技术进行分析,准确得到了导弹发射冲击信号的固有模态函数(intrinsic mode function,简称IMF)和时间-频率-能量谱特征,并研究了两次冲击的频率分布和各阶IMF与原始信号的相关性。结合边际谱分析对比了两个舱段能量在中低频和高频的传递特性,进一步验证了HHT方法在分析非线性和非平稳冲击信号中的优越性。  相似文献   

10.
张梅军  黄杰  柴凯  陈灏 《机械》2013,(12):6-9
为避免碰摩故障对旋转机械的影响,针对转子系统局部碰摩的特征,提出一种基于EMD分解Hilbert包络谱分析方法。该珐利用EMD方法分解含有碰摩故障的振动信号,提取出的IMF分量有明显的调幅特征,再对其中突出的IMF分量进行Hilbert包络谱分析提取出故障特征频率。与倒谱分析相比,得到的碰摩故障信息更加精确;与小波分析相比,能更容易提取出真实的故障特征。  相似文献   

11.
提出了基于经验模态分解(EMD)的齿轮箱故障诊断HHT方法,介绍了Hilbert-Huang变换理论及其算法.此后以1台现场轧机故障减速机为对象,对采集的故障信号进行EMD分解,得到固有模态函数(IMF)分量,然后对所有固有模态函数进行Hilbert变换处理,所得三维图和边际谱图较为清晰地表达了故障信息,说明了该方法在工程应用中的适用性.  相似文献   

12.
为提取机械设备早期故障微弱信号特征频率,在对信号进行小波包降噪后,利用改进Hilb ert Huang变换(Hilbert Huang transform,简称HHT)进行特征提取,通过经验模态分解(em pirical mode decomposition,简称EMD)得到若干个固有模态函数(intrinsic mode functio n,简称IMF)后,利用IMF与EMD分解前信号的 相关系数作为判断标准,剔除分解中产生的多余低频IMF,选取有效IMF集进行边际谱分析。 改进HHT不仅可消除多余IMF的影响,还可节省Matlab计算内存,提高运算速度。  相似文献   

13.
基于HHT的非平稳信号分析仪的研究   总被引:2,自引:1,他引:2  
本文介绍了希尔伯特-黄变换(HHT)的原理,首先通过经验模态分解(EMD),信号被分解成一系列固有模态函数(IMF),再通过Hilbert变换得到每个IMF的瞬时频率(IF)和瞬时幅值函数,最终得到原始信号的IF分布和Hilbert谱。Hilbert谱是信号的时间-频率-能量分布。为使HHT能有效分析非平稳信号,引入了改进HHT的方法,即在HHT过程中,将小波包变换(WPT)作为预处理器,外加IMF的筛选。采用虚拟仪器开发技术研制了一台基于HHT的非平稳信号分析仪。最后以HHT去噪为例,介绍了基于HHT的非平稳信号分析仪的应用。  相似文献   

14.
陈群涛  石新华  邵华 《工具技术》2012,46(12):53-58
针对多齿铣削过程中振动信号的特点,提出了一种基于经验模态分解(EMD)和独立分量分析(ICA)相结合的方法,对混叠在振动信号中的铣刀破损信号进行分离。对振动信号进行经验模态分解提取出信号中的所有本征模函数,然后应用fastICA对所提取出的本征模函数进行独立分量分析。利用该方法对铣削加速度振动数据进行了分析,试验表明,该方法可以提取出混合信号中与刀具破损状态相关的故障特征频率成分。  相似文献   

15.
In order to extract the arc feature information related to welding quality in alternating current square wave submerged arc welding (AC Square Wave SAW), an improved Hilbert–Huang transform (HHT) is put forward to investigate the time–frequency distribution of arc current, and the energy entropy is employed to quantitatively judge the arc characteristics. The empirical mode decomposition (EMD) is used to decompose the collected current signal into a number of Intrinsic Mode Functions (IMFs). The method for removing the high frequency and undesirable low-frequency IMFs is proposed by using the correlation coefficient of the IMF and the original signal as criterion, and the valid IMFs are selected for the Hilbert transform and energy entropy calculation. The improved HHT combining with energy entropy can quantitatively describe the time–frequency energy distribution characteristics of the arc current signal at different duty cycle, frequency and welding speed. Experimental results are provided to confirm the effectiveness of this approach to extract the arc physical information related to welding quality.  相似文献   

16.
基于EMD和频谱校正的故障诊断方法   总被引:4,自引:2,他引:2  
提出了一种基于短时间样本的故障诊断方法,通过频谱校正提高频谱精度.首先对原始信号进行小波降噪,提高信噪比;然后进行经验模态分解,获取信号的各阶本征模态函数;分别对各阶本征模态函数进行希尔伯特解调分析,获得包含系统故障特征信息的调制信号;接着采用校正算法对调制信号进行频谱校正,频谱变换后获得精确的频谱;最后根据校正结果进行系统故障判别.实践表明,此方法具有速度快、精度高的特点,适合于设备的在线快速诊断.  相似文献   

17.
A number of techniques for detection of faults in rolling element bearing using frequency domain approach exist today. For analysing non-stationary signals arising out of defective rolling element bearings, use of conventional discrete Fourier transform (DFT) has been known to be less efficient. One of the most suited time–frequency approach, wavelet transform (WT) has inherent problems of large computational time and fixed-scale frequency resolution. In view of such constraints, the Hilbert–Huang Transform (HHT) technique provides multi-resolution in various frequency scales and takes the signal's frequency content and their variation into consideration. HHT analyses the vibration signal using intrinsic mode functions (IMFs), which are extracted using the process of empirical mode decomposition (EMD). However, use of Hilbert transform (HT)-based time domain approach in HHT for analysis of bearing vibration signature leads to scope for subjective error in calculation of characteristic defect frequencies (CDF) of the rolling element bearings. The time resolution significantly affects the calculation of corresponding frequency content of the signal. In the present work, FFT of IMFs from HHT process has been incorporated to utilise efficiency of HT in frequency domain. The comparative analysis presented in this paper indicates the effectiveness of using frequency domain approach in HHT and its efficiency as one of the best-suited techniques for bearing fault diagnosis (BFD).  相似文献   

18.
This work presents the application of a new signal processing technique, the Hilbert-Huang transform and its marginal spectrum, in analysis of vibration signals and fault diagnosis of roller bearings. The empirical mode decomposition (EMD), Hilbert-Huang transform (HHT) and marginal spectrum are introduced. First, the vibration signals are separated into several intrinsic mode functions (IMFs) by using EMD. Then the marginal spectrum of each IMF can be obtained. According to the marginal spectrum, the localized fault in a roller bearing can be detected and fault patterns can be identified. The experimental results show that the proposed method may provide not only an increase in the spectral resolution but also reliability for the fault detection and diagnosis of roller bearings. This paper was recommended for publication in revised form by Associate Editor Seong-Wook Hong Hui Li received his B.S. degree in mechanical engineering from the Hebei Polytechnic University, Hebei, China, in 1991. He received his M.S. degree in mechanical engineering from the Harbin University of Science and Technology, Hei-longjiang, China, in 1994. He re-ceived his PhD degree from the School of Mechanical Engineering of Tianjin University, Tianjin, China, in 2003. He is currently a professor in mechanical engineering at Shijiazhuang Institute of Railway Technology, China. His research and teaching interests include hybrid driven mechanism, kinematics and dynamics of machinery, mechatronics, CAD/CAPP, signal processing for machine health monitoring, diagnosis and prognosis.  相似文献   

19.
Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller bearing into time-scale representation, then, an envelope signal can be obtained by envelope spectrum analysis of wavelet coefficients of high scales. By applying EMD method and Hilbert transform to the envelope signal, we can get the local Hilbert marginal spectrum from which the faults in a roller bearing can be diagnosed and fault patterns can be identified. Practical vibration signals measured from roller bearings with out-race faults or inner-race faults are analyzed by the proposed method. The results show that the proposed method is superior to the traditional envelope spectrum method in extracting the fault characteristics of roller bearings.  相似文献   

20.
刘小丽  张晓光  陈莹莹 《轴承》2012,(6):39-41,53
将第2代小波算法和Hilbert-Huang变换相结合并应用于滚动轴承的故障诊断中。该方法首先构造并运用自适应冗余第2代小波对轴承振动信号进行消噪,并通过仿真分析验证了该算法的优越性;其次,对消噪信号进行HHT分析,通过EMD将信号分解为包含不同特征尺度的模态函数,针对低频成分进行Hilbert边际谱分析,从而提取故障特征。仿真及试验结果表明了该方法的有效性和实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号