首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
GH4169 高能喷丸表面纳米化的研究   总被引:1,自引:0,他引:1  
采用GH4169高温舍金进行高能喷丸表面纳米化试验,通过X射线衍射、透射电镜、扫描电镜、能谱及硬度测试等方法对不同时间喷丸后材料表面晶粒尺寸、形貌以及变形层硬度进行分析.结果表明:喷丸5 min实现表面纳米化,表面晶粒尺寸约为58.25 nm,随着喷丸时间的延长,晶粒逐渐细化,在喷丸30 min时,表层晶粒尺寸约为21.41 nm,强烈变形层深度达到8 μm,表面硬度约为HV480,继续延长时间,表层晶粒尺寸变化不大,在喷丸120 min时,表层晶粒尺寸约为20.27 nm,表面硬度约为HV600,强烈变形层深度达到40 μm.  相似文献   

2.
利用表面机械研磨处理(SMAT)技术对Zr-4合金进行了表面纳米化处理,用XRD、光学显微镜、表面粗糙度仪对经SMAT不同时间合金表层的物相组成、平均晶粒尺寸、显微组织和表面粗糙度进行了分析,并使用硬度计测试了距表面不同深度处的硬度.结果表明:经SMAT后Zr-4合金表层的物相组成未改变;SMAT 15 min后Zr-4合金表层平均晶粒尺寸达到最小约为20 nm;SMAT后合金表层出现了一定厚度的塑性变形层;SMAT 60 min后合金表层的硬度约为基体硬度的1.3倍,且沿着深度方向逐渐减小;合金表面粗糙度随SMAT时间的延长先增大后减小最后趋于平稳.  相似文献   

3.
采用光学显微镜、场发射扫描电镜、EDS能谱仪和显微硬度计等研究了Pb-0.05%Ca-1.5%Sn-0.026%Al(质量分数)合金经不同工艺固溶后在100℃时效过程的不连续脱溶与再结晶行为。结果表明:该合金经不同工艺固溶后晶粒尺寸均约为1 000μm;经270℃保温30 min后空冷+310℃保温30 min水冷固溶(A工艺)再时效35 h后的晶粒细化至300~400μm,经270℃保温30 min水冷(B工艺)再时效12 h后的晶粒细化至60μm;由于不连续脱溶组织形核、生长使原有晶粒细化,实现了不借助塑性变形的再结晶;在不同固溶工艺下,合金时效时发生不连续脱溶所需保温时间及晶粒细化的程度也不同;随保温时间延长,A工艺处理合金的硬度曲线出现两处峰值,二次硬化相均为(PbSn)3Ca,B工艺处理合金的硬度曲线无规律可循,且细晶组织不稳定。  相似文献   

4.
采用加压成形工艺制备6063铝合金,然后对铝合金进行535℃固溶和时效处理,研究了固溶时间(15~120 min)、时效温度(160~200℃)和时效时间(1~24 h)对该铝合金显微组织、拉伸性能和硬度的影响.结果表明:随着固溶时间的延长,6063铝合金晶粒尺寸增大,Mg2Si初生相逐渐消失并回溶至基体中,而固溶时间未对α-Al8Fe2Si相和β-Al5FeSi相的含量与形貌产生影响;固溶处理后,随着时效温度的升高或时效时间的延长,第二相Mg2Si数量增加,但过高的时效温度或过长的时效时间导致Mg2Si相粗大;随着固溶时间、时效时间的延长,或时效温度的升高,合金的强度和硬度先升高后降低,断后伸长率先减小后增大;6063铝合金适宜的固溶和时效处理制度为535℃×60 min+180℃×7 h,此时合金中析出的Mg2Si相最细小,且弥散分布,合金具有最高的强度和硬度,以及合适的断后伸长率.  相似文献   

5.
将SP-700钛合金在β相区1 000℃固溶15 min后,降温至(α+β)相区进行不同时间(3~10 min)和温度(650~900℃)下的固溶处理以及不同温度(370~650℃)和时间(15,90 min)的单级时效处理和280℃低温预时效+第二级时效的双级时效处理,研究了不同工艺下合金的组织和性能。结果表明:在850℃下固溶后合金中α相的体积分数随固溶时间的延长而增加,当固溶时间为5 min时,合金具有较好的强塑性匹配;在5 min固溶时间下,α相体积分数随固溶温度的升高而减小,当固溶温度为650℃时,合金具有较好的强塑性匹配。β相区固溶+单级/双级时效后,合金基本由β晶粒、α相以及针状马氏体组成;在时效温度650℃和时间90 min下单级时效或时效温度650℃和时间15 min下双级时效后,合金均具有较好的强塑性匹配。  相似文献   

6.
以Al-Zn-Mg-Cu合金为研究对象,在不同变形工艺条件(扭转圈数、变形温度)下对其进行高压扭转试验,利用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射技术(XRD)以及硬度测试等手段分析变形工艺参数对合金微观组织和力学性能的影响规律。研究结果表明:原始铸态组织呈等轴状,分布不均匀,粗大的第二相粒子(Al2Cu、MgZn2)沿晶界呈链状分布;高压扭转变形过程中,随着变形温度的升高、扭转圈数的增多,基体组织中粗大的第二相粒子数量明显减少,分布更加均匀,第二相粒子回溶进Al基体,获得过饱和固溶体;高压扭转变形后的Al-Zn-Mg-Cu合金位错密度显著上升,并且扭转圈数越多,变形温度越高,位错密度增加幅度也越大,微晶尺寸则随着扭转圈数的增大和变形温度的升高而减小;高压扭转变形后Al-Zn-Mg-Cu合金显微硬度值总体上随扭转圈数增大和变形温度升高而增大。  相似文献   

7.
研究了铬钕铜合金中稀土元素钕的质量分数(0,0.05%,0.1%)、冷变形量(70%,90%,95%)和时效时间对其组织和性能的影响。结果表明:冷变形量为90%时时效后合金中出现纤维组织;稀土元素钕能提高合金的硬度;随着冷变形量的增大,合金的电导率增大,时效前变形量越大,时效后合金电导率提高的幅度就越大;随时效时间的延长,合金的硬度先增大后减小,电导率先迅速增大,之后增大比较缓慢。  相似文献   

8.
本文研究了晶粒尺寸对Zn-0.4%Al合金在超塑性变形条件下的力学特性、宏观变形行为及微观变形机构的影响。结果表明:1.Zn-0.4%Al合金的晶粒尺寸在100微米到10微米范围内,在给定试验条件下,σ-d~(1/2)‘关系符合Hall-Petch公式,晶粒尺寸≥35微米时变形机构以孪生为主,20~10微米时以滑移为主;2.晶粒尺寸小于10微米时,Hall-Petch关系式已不适用,随晶粒细化应力下降;3.晶粒尺寸小于5微米时属于超塑性变形区,其中晶粒尺寸为1微米时,晶界滑移在变形中起主导作用,同时结晶学滑移也有重要贡献。  相似文献   

9.
通过对不同热轧态的Cu-17.0Zn-0.4Cr合金在不同热处理状态下的硬度测定和显微组织观察,分析了热处理工艺对合金硬度的影响.结果表明:随着时效时间的延长和时效温度的增加,合金的硬度下降;0~525 ℃)×1 h时效,硬度可达110 HV以上.  相似文献   

10.
采用雾化法制备Fe-9Cr-1.5W-0.3Ti-0.3Y合金粉,经不同时间(12,20 h)球磨处理后,使用热等静压工艺制备9Cr氧化物弥散强化(ODS)钢,研究了9Cr-ODS钢的显微组织与拉伸性能。结果表明:雾化合金粉末为规则球状α-Fe相合金粉,平均粒径为47.83μm,晶粒尺寸约为20μm;球磨20 h后,合金粉末的平均粒径和晶粒尺寸均明显下降,分别为30.50μm, 12 nm;随着球磨时间的延长,制备的9Cr-ODS钢的晶粒尺寸减小,析出相含量增加;延长球磨时间有利于提高9Cr-ODS钢的室温和高温抗拉强度,但不利于提高高温韧性。  相似文献   

11.
通过高压扭转方法制备了平均晶粒尺寸为30nm的Al_(0.3)CoCrFeNi纳米晶高熵合金,利用电子背散射衍射仪、透射电镜、动电位极化曲线和交流阻抗谱测试等方法研究了其显微组织和在NaOH溶液中的电化学性能,并与铸态粗晶高熵合金进行了对比。结果表明:粗晶和纳米晶高熵合金的显微组织均为简单面心立方结构,但纳米晶高熵合金的位错密度较粗晶高熵合金的提高了近10个数量级;同时,相比于粗晶高熵合金,纳米晶高熵合金的自腐蚀电流密度降低了42.9%,维钝电流密度降低了21.6%,表现出优异的耐腐蚀性能,这主要归因于高压扭转过程引入的高密度晶界和位错;通过高压扭转使晶粒细化至纳米级是增强高熵合金耐碱腐蚀能力的一个有效途径。  相似文献   

12.
16MnR焊接接头高能喷丸表面强化的研究   总被引:2,自引:0,他引:2  
采用16MnR压力容器钢气体保护焊接头进行高能喷丸表面强化试验,利用金相显微镜、扫描电镜、硬度测试以及X射线衍射等方法对不同时间喷丸处理的表层组织形貌、变形层硬度以及晶粒尺寸进行了分析。结果表明,焊接接头的焊缝、热影响区和母材随着喷丸时间的延长,晶粒逐渐细化,表层硬度和硬化层深度逐渐增加,显微硬度随着距表层深度的增加而降低,当喷丸时间120min时,焊缝、热影响区、母材表层硬度可分别提高240HV、215HV、223HV。喷丸时间继续增加,硬度值增幅不明显。综合喷丸时间对表层组织、硬度和变形层深度的影响,焊接接头各区结果都显示120min喷丸处理的样品强化效果最佳。  相似文献   

13.
对一种新型单晶高温合金进行高温(1 100℃)时效,研究了不同时效时间(0,200,400,600,800,1 000h)对其显微组织和高温(1 100℃)拉伸性能的影响。结果表明:时效前后,该新型单晶高温合金的组织均主要由γ基体和γ′相组成;随着时效时间的延长,γ基体通道的宽度及γ′相的尺寸均增大;时效600h后,合金中析出与基体有明显取向关系的细针状TCP相,TCP相的析出量随着时效时间的延长而增加;单晶高温合金的高温屈服强度和抗拉强度均随着时效时间的延长而降低,断后伸长率和断面收缩率则先增大后减小;时效前后,单晶高温合金的拉伸断口均具有颈缩和韧窝特征,断裂机制均为韧窝断裂。  相似文献   

14.
设计了钪质量分数分别为0.02%,0.07%,0.12%的Al-Zn-Mg-Cu-Sc-Zr合金,研究了钪含量以及固溶温度(450~490℃)和时间(0.5~5 h)对铸态合金组织和性能的影响。结果表明:随着钪含量的增加,合金的晶粒细化,晶界处的粗大第二相增多,硬度降低。经470℃×1 h固溶后,含质量分数0.02%钪的合金的硬度最高;继续提高固溶温度或延长固溶时间会导致晶粒尺寸增大,同时延长固溶时间还会导致晶界处聚集块状第二相,因此硬度降低。  相似文献   

15.
利用透射电镜和X射线衍射仪等仪器研究了经大变形量冷轧后Ti-15-3合金中纳米(30 nm)组织的热稳定性。结果表明:冷轧态合金在450℃保温时纳米组织的热稳定性较好,保温1 200 min后晶粒尺寸仍保持在100~150 nm;550℃时纳米组织的热稳定性逐渐降低;650℃及以上温度加热后纳米组织在极短时间内即迅速长大;纳米级β相合金在(α+β)相区退火时,α相的析出会钉扎位错和晶界,从而阻止纳米晶粒的长大;在较低的退火温度下纳米晶粒的长大与其内部拥有大量非平衡晶界有关。  相似文献   

16.
对Mg-3Al-0.8Gd合金进行了压缩变形及半固态等温热处理,研究了压缩变形量(10%,15%,20%)、等温温度(530,540,550,560,570℃)及保温时间(3,5,10,15min)对该合金显微组织与硬度的影响,并对比了铸态和热处理态Mg-3Al-0.8Gd合金的拉伸和冲击性能。结果表明:不同条件压缩变形及等温热处理后,Mg-3Al-0.8Gd合金组织均由α-Mg基体和β-Mg_(17)Al_(12)相组成;随着等温温度、保温时间及压缩变形量的增加,合金中的α枝晶逐渐转变为等轴晶,晶粒细化,组织均匀性提高,同时显微硬度增大;压缩变形20%并经550℃保温15 min热处理后,Mg-3Al-0.8Gd合金的抗拉强度、断后伸长率、断面收缩率和冲击吸收能量较其铸态合金的分别提高了11.3%,32.6%,3.8%和23.3%。  相似文献   

17.
在普通喷丸设备上加增压罐,采用增压喷丸方法对7050铝合金表面进行喷丸处理;用X射线衍射仪、光学显微镜、透射电镜、选区电子衍射仪等对合金表层结构进行了观察与分析,并用显微硬度计测试了表层的硬度。结果表明:经增压喷丸处理后7050铝合金表层的衍射峰明显宽化,随着处理时间的增加,塑性变形层厚度增加,表层晶粒细化至纳米级,平均晶粒尺寸约为40 nm;纳米化后的合金表层硬度比心部硬度提高了1.5倍,其原因可归结为细晶强化及加工硬化。  相似文献   

18.
本文用热扭转试验方法研究了LD2合金的热变形及对其后时效行为的影响。测定了LD2合金的高温流变曲线和热变形后的等温析出动力学曲线。结果表明,热变形后到淬火前的转移时间在1秒钟之内,可使时效达硬度峰值的时间较普通淬火时效缩短1个数量级。热变形后立即淬火时效可使析出相细化,弥散度增加,时效硬化能力提高。  相似文献   

19.
铜铬合金的冷变形及断丝原因分析   总被引:1,自引:0,他引:1  
实验研究了拉拔变形程度与亚微米晶铜铬合金显微组织、力学性能和导电性能的关系,并分析了拉拔过程中断丝的原因.结果表明,亚微米晶铜铬合金通过拉拔变形获得的变形晶粒尺寸为200 nm,硬度可达HV 185,抗拉强度达到600 MPa以上,而导电性能稍有下降.丝材断口形貌为杯锥断口,属典型的微孔聚集型断裂.在拉拔过程中,丝材中存在的大量细小弥散的第二相Cr颗粒与Cu基体变形不协调,是微孔产生和裂纹扩展的主要原因.  相似文献   

20.
对T4态和T6态WE54合金进行准静态压缩变形和空气锤锻(高速)变形试验,研究了变形前后的显微组织、硬度和压缩性能.结果表明:T4态和T6态WE54合金在准静态变形和高速变形后,部分变形晶粒内出现孪晶,并且在一些粗大孪晶内形成了二次孪晶,孪晶出现平行排列和交割特征;不同速率变形后T4态和T6态合金的变形晶粒尺寸未发生明显变化,但新生成的孪晶由于切割基体细化了组织,有助于维氏硬度和压缩性能的提高;与准静态变形相比,高速变形能够促进晶粒采用孪生机制协调变形,产生更多的孪晶界细化组织,提升变形后合金的硬度和屈服强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号