首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lung cancer poses a serious threat to human life with high incidence and miRNA is an important biomarker in tumors. This study aimed to explore the effect of miR-143-3p on the biological function of lung cancer cells and the underlying mechanism. Eighty-seven samples of lung cancer tissues and 81 samples of tumor-adjacent tissues from patients undergoing radical lung cancer surgery in our hospital were collected. The lung cancer cells and lung fibroblast cells (HFL-1) were purchased, and then miR-143-3p-mimics, miR-NC, si-CTNND1, and NC were transfected into A549 and PC-9 cells to establish cell models. MiR-143-3p and CTNND1 expression levels were measured by the qRTPCR, Bax, Bcl-2, and CTNND1 expression levels by the Western Blot (WB), and cell proliferation, invasion, and apoptosis by the MTT assay, Transwell assay, and flow cytometry. Dual luciferase report assay was used to determine the relationship between miR-143-3p and CTNND1. In this study, miR-143-3p was lowly expressed in lung cancer and CTNND1 was highly expressed in lung cancer. The overexpression of miR-143-3p inhibited cell proliferation and invasion, promoted cell apoptosis, significantly increased Bax protein expression, and decreased Bcl-2 protein expression. The inhibition of CTNND1 led to opposite biological characteristic in cells. The dual luciferase reporter assay demonstrated that miR-143-3p was a target region of CTNND1. Such results suggest that miR-143-3p can inhibit the proliferation and invasion of lung cancer cells by regulating the expression of CTNND1 and promote the apoptosis of lung cancer cells, sott is expected to be a potential target for lung cancer.  相似文献   

2.
Colorectal cancer (CRC) is a heterogeneous cancer, and many risk factors for colorectal cancer have been established. For CRC metastasis, tumor cell migration, adhesion as well as invasion are important processes. WiskottAldrich syndrome protein family member 3 (WASF3) is necessary for metastasis of various types of cancers. However, its role in CRC progression has not been fully elucidated. This study examined the in vitro functional roles of WASF3 in the CRC and explored the underlying molecular mechanisms. We used siRNA-WASF3 to gene silence WASF3 in colon cancer cell (HCT116) in vitro. The effects of WASF3 silencing on HCT116 cell apoptosis, proliferation, migration, as well as invasion were assessed by flow cytometry, CCK-8, and transwell assays. ZNF471 protein expressions were detected by immunofluorescence staining and RT-PCR. Moreover, the effects of ZNF471 were studied on a series of in vitro antitumor-promoting assays using HCT116. WASF3 knockdown expression using small interfering RNA (siRNA) ameliorated CRC cell proliferation, anchorage-independent growth, invasion, and metastasis. Furthermore, we observed that WASF3 contributed to upregulating the metastasis signaling pathway through inhibiting the expression of ZNF471. Our study suggests that targeting WASF3 signaling might be a novel therapeutic strategy for treating CRC.  相似文献   

3.
Pancreatic cancer is one of the most aggressive malignancies with poor prognosis and high mortality. Recent studies showed that microRNAs are dysregulated and involved in the initiation and progression of pancreatic cancer. In this study, we found that miR-708 was significantly downregulated in pancreatic cancer tissues and cell lines. Lentivirus-mediated overexpression of miR-708 could significantly inhibit the proliferation and invasion, while enhanced chemosensitivity to gemcitabine in both Panc-1 and SW1990 cells. Luciferase reporter assay showed that miR-708 bound the 3’-untranslated region of survivin and suppressed the expression of survivin in pancreatic cancer cells. In pancreatic cancer tissues, survivin protein was highly expressed and negatively correlated with miR-708 expression. Furthermore, the restoration of survivin expression could partially antagonize proliferation inhibition and apoptosis induction by miR-708 in pancreatic cancer cells. The Panc-1 cells with overexpression of miR-708 also showed decreased proliferation capability in nude mouse model compared with parental cells. In conclusion, our results suggest that miR-708 inhibits pancreatic cancer and could be a novel potential candidate to treat pancreatic cancer.  相似文献   

4.
Aim: Gastric cancer (GC) is one of the most common malignant tumors. Chrysophanol has been reported to possess antitumor effects on a variety of cancers; however, its role in GC remains unclear. This study aimed to investigate the effects of chrysophanol on the proliferation, pyroptosis, migration, and invasion of GC cells. Methods: Human GC cell lines MKN 28 and AGS cells were treated with different concentrations of chrysophanol, then cell proliferation, migration, invasion and pyroptosis were determined by CCK-8, colony-forming assay, wound healing assay, Transwell assay, and flow cytometry. Cell migration and invasion were reassessed in these transfected cells following the transfection of nod-like receptor protein-3 (NLRP3) siRNA in MKN 28 and AGS cells. To examine the downstream signaling pathway of the NLRP3 signaling pathway, NLRP3, caspase-1, gasdermin-D, interleukin (IL)-1β, and IL-18 were detected by quantitative real-time-polymerase chain reaction or western blotting. Results: Chrysophanol inhibited the proliferation of GC cells, caused pyroptosis, inhibited cell migration and invasion, and increased the expression of NLRP3 inflammasomes in GC cells. Knockdown of NLRP3 inhibited the effects of chrysophanol on proliferation, pyroptosis, migration, and invasion of GC cells. Chrysophanol plays an anticancer role by enhancing NLRP3. Conclusions: Chrysophanol exerts anti-neoplastic effects in vitro in GC cells by modulating NLRP3, thus highlighting its therapeutic potential in GC.  相似文献   

5.
6.
Recent studies suggested that LIM and SH3 protein 1 (LASP-1) is a promising therapeutic target for renal cell cancer (RCC). This study aimed to explore the role of LASP-1 in RCC. For this purpose, LASP-1 expression in RCC tissues was analyzed by immunohistochemistry and Western blot analysis. Cell proliferation, migration, invasion, and gene expression were detected by CCK-8 assay, Transwell assay, and Western blot analysis. The results showed that LASP-1 was highly expressed in RCC, and its expression level,t was positively correlated with lymph node metastasis and tumor, nodes, and metastases (TNM) stage. The knockdown of LASP-1 expression significantly inhibited the proliferation of RCC cells, increased the apoptosis rate, and inhibited RCC cell invasion and migration by inhibiting epithelial–mesenchymal transition. We conclude that LASP-1 promotes RCC progression and metastasis and is a promising therapeutic target for RCC.  相似文献   

7.
Background: The Warburg effect is considered as a hallmark of various types of cancers, while the regulatory mechanism is poorly understood. Our previous study demonstrated that miR-194-5p directly targets and regulates insulin-like growth factor1 receptor (IGF1R). In this study, we aimed to investigate the role of miR-194-5p in the regulation of the Warburg effect in ovarian cancer cells. Methods: The stable ovarian cell lines with miR-194-5p overexpression or silencing IGF1R expression were established by lentivirus infection. ATP generation, glucose uptake, lactate production and extracellular acidification rate (ECAR) assay were used to analyze the effects of aerobic glycolysis in ovarian cancer cells. Gene expression was analyzed by quantitative polymerase chain reaction (qPCR) and western blot. Immunohistochemistry assays were performed to assess the expression of the IGF1R protein in ovarian cancer tissues. Results: Overexpression of miR-194-5p or silencing IGF1R expression in ovarian cancer cells decreases ATP generation, glucose uptake, lactate production, and ECAR and inhibits both the mRNA and protein expression of PKM2, LDHA, GLUT1, and GLUT3. While the knockdown of miR-194-5p expression led to opposite results. Overexpression of miR-194-5p or silencing IGF1R expression suppressed the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway, whose activation can sustain aerobic glycolysis in cancer cells, and the knockdown of miR-194-5p expression promoted the activation of the PI3K/AKT pathway. Conclusion: Our results suggest that miR- 194-5p can inhibit the Warburg effect by negative regulation of IGF1R and further repression of the PI3K/AKT pathway, which provides a theoretical basis for further test of miR-194-5p as a target in the treatment of ovarian cancer.  相似文献   

8.
In recent decades, RNA binding motif (RBM) proteins have been widespread concerned by researchers. Among them, RBM5 is considered as a potential tumor suppressor gene in HCC. RBM10, also belonging to the RBM family, have similar structure and high homology with RBM5, indicating its potential as potential tumor suppressor genes. However, the role of RBM10 in tumors is controversial. The purpose of this study was to analyze the expression correlation and functional relationship of miR-21 and RBM10 in human hepatocellular carcinoma (HCC) tissues and corresponding tumor cells. Bioinformatics analysis showed that miR-21 and RBM10 were both highly expressed in HCC; similarly, the expression levels of miR-21 and RBM10 in HCC cells were significantly higher than those in normal hepatocytes. There was a positive correlation between miR-21 and RBM10. Furthermore, knockdown of RBM10 inhibited the proliferation, migration and invasion of SNU-398 cells, and simultaneous overexpression of miR-21 attenuated this inhibitory effect. Meanwhile, overexpressing RBM10 could promote the proliferation, migration and invasion of Hep G2 cells; while the stability of miR-21 could be reduced by knocking down RBM10. On the whole, the findings of this study indicate that RBM10 is involved in regulating the function and activity of human HCC cells by affecting the stability of miR-21. RBM10 cannot be simply summarized as a tumor suppressor or oncogene. Further studies are needed to clarify the role of RBM10 in tumors.  相似文献   

9.
The pathogenesis of high altitude-related gastric mucosal injury remains poorly understood, this study aimed to investigate the role of autophagy in hypoxia-induced apoptosis of rat gastric mucosal cells. Rats were randomized into four groups which were maintained at an altitude of 400 m (P) or received no treatment (H), autophagy inducer rapamycin (H+AI) or autophagy inhibitor 3-MA (H+AB) at an altitude of 4,300 m for 1, 7, 14 and 21 days, respectively, and the morphology, ultrastructure, autophagy, and apoptosis of gastric mucosal tissues were examined. Gastric mucosal epithelial cells CC-R039 were cultured under conditions of normoxia, 2% O2 (hypoxia), or 2% O2+anti-mTORC1 for 0, 24, 48, and 72 h, respectively, and the autophagy and apoptosis were analyzed. CC-R039 cells were transfected with siHIF-1α, siTERT, or siRNA and the autophagy was examined. The results showed that the exposure to hypoxia increased the autophagy and apoptosis of gastric mucosal cells in rats, and apoptosis was aggravated by rapamycin treatment but alleviated by 3-MA treatment. Increased duration of hypoxia from 0 to 72 h could increase the autophagy and apoptosis but decrease the proliferation of gastric mucosal cells. Inhibition of mTORC1 with rapamycin led to further increase in apoptosis and even substantial cell death, and inhibition of HIF- 1α and TERT increased mTORC1 expression and reduced autophagy. Moreover, the inhibition of HIF-1α reduced TERT expression. In conclusion, hypoxia could induce apoptosis of rat gastric mucosal cells by activating autophagy through HIF-1α/TERT/mTORC1 pathway  相似文献   

10.
XUE JIANG  HONG ZHANG 《Biocell》2022,46(3):785-794
Posterior capsular opacification (PCO) is linked to the pathological process of lens epithelial cells, which includes proliferation, migration, and epithelial-mesenchymal transition (EMT). Our goal was to investigate whether long noncoding RNA (lncRNA) XIST contributes to EMT via targeting miR-124/Slug axis in TGF-β2-induced SRA01/04 cells. EMT was induced by stimulating SRA01/04 cells with 10 ng/mL TGF-β2 for 24 h, and PCO microenvironment was simulated. The expressions levels of lncRNA XIST, miR-124, and Slug were measured by real-time polymerase chain reaction (RT-PCR) and western blot. The role and mechanism of lncRNA XIST in promoting EMT of TGF-β2-treated SRA01/04 cells were investigated by using cell transfection, cell counting kit-8 (CCK-8), immunofluorescence staining, transwell assay, wound-healing assay, RT-PCR, western blot and dual-luciferase reporter assay. The expression of Slug and lncRNA XIST was markedly increased, while miR-124 was downregulated in TGF-β2-treated SRA01/04 cells compared with the control group. Knockdown of lncRNA XIST reduced EMT, migration, and cell viability in TGF-β2-induced SRA01/04 cells; moreover, it adversely modulated miR-124 and adjusted the expression of Slug in SRA01/04 cells, while these effects were diminished by co-transfection with AMO-miR-124. Our data demonstrated that lncRNA XIST functioned as a competitive endogenous RNA (ceRNA) of miR-124 to modulate the expression level of Slug, thereby modulating EMT, migration, and cell viability in SRA01/04 cells. In conclusion, lncRNA XIST has a crucial role in promoting TGF-β2-induced EMT via modulating the miR-124/Slug axis in SRA01/04 cells, and it may provide a novel therapeutic option for PCO treatment.  相似文献   

11.
Peroxiredoxin 1 (PRDX1) participates in tumor cell proliferation, apoptosis, migration, invasion, and the epithelial-to-mesenchymal transition (EMT). This study aimed to investigate the effect of PRDX1 on the EMT of airway epithelial cells stimulated with lipopolysaccharide (LPS) and transforming growth factor-beta 1 (TGF-β1). PRDX1 overexpression significantly increased the proliferation and migration of human bronchial epithelial (BEAS-2B) cells, reduced cell apoptosis (p < 0.01), and induced EMT and collagen deposition by upregulating the expression of the matrix metallopeptidase (MMP)2, MMP9, α-smooth muscle actin (α-SMA), N-cadherin, vimentin and twist proteins and inhibiting E-cadherin expression (p < 0.05). PRDX1 overexpression promoted TGF-β1-mediated inhibition of cell proliferation and migration and significantly enhanced the TGF-β1-induced EMT and collagen synthesis (p < 0.05). Knockdown of PRDX1 inhibited cell proliferation, migration, EMT, and collagen synthesis (p < 0.01), reversed LPS-mediated inhibition of cell proliferation and migration, and significantly suppressed LPS-induced EMT and collagen synthesis (p < 0.01). The result indicating that PRDX1 may be involved in LPS/TGF-1-induced EMT and collagen synthesis in human bronchial epithelial cells.  相似文献   

12.
Tumor progression is usually characterized by proliferation, migration, and angiogenesis, which is essential for supplying both nutrients and oxygen to the tumor cells. Therefore, targeting angiogenesis has been considered a promising therapeutic strategy for cancer prevention and treatment. In the present study, we demonstrated that in addition to suppressing lung cancer cell proliferation and migration in vitro, 10-hydroxycamptothecin (10-HCPT) is also capable of inhibiting angiogenesis in vivo with a miR-181a-dependent manner. Mechanistically, by upregulating miR-181a, which in turn downregulating FOXP1, 10-HCPT can inhibit the PI3K/Akt/ERK signaling pathwaymediated angiogenesis. Furthermore, reduced levels of miR-181a have been found in both lung cancer cell lines and xenograft with concurrently elevated levels of FOXP1, VEGF, bFGF, and HDGF. Consistent with the findings from the in vitro experiments, miR-181a impairs neovascularization in our xenograft model. In summary, our findings have not only established the anti-oncogenic role of miR-181a in lung cancer angiogenesis but also suggest that 10-HCPT could be a potential therapeutic reagent for lung cancer treatment.  相似文献   

13.
HONGWEI CHEN  XUAN SONG  HEMEI LI 《Biocell》2020,44(3):345-351
Ovarian cancer (OC) is a major cause of cancer-related deaths among gynaecological malignancies. Emerging studies suggest that the long non-coding RNA (lncRNA) may be the potential biomarker for the diagnosis and prognosis of the cancer. The current study was carried out to investigate the role of lncRNA CCHE1 silencing in OC cell invasion and migration. Expression of lncRNA CCHE1 in normal ovarian cell Hose and OC cell lines HO 8910, A2780 and SKOV3 was detected. LncRNA were transfected with siRNA, and then the proliferation of cells was detected by using MTT assay. Cell invasion and migration was measured by using Transwell assay and scratch test, respectively. The protein levels of E-cadherin, N-cadherin, ERK, p38-MAPK and the phosphorylation of ERK and p38-MAPK in cells after siRNA transfection were detected by using Western blot analysis. Consequently, lncRNA CCHE1 expression was highly expressed in OC cell lines, especially in SKOV3 cells. siRNA1, siRNA2 and siRNA3 all decreased. lncRNA CCHE1 expression in SKOV3 cells and siRNA2 showed the best silencing efficacy. Silencing of lncRNA CCHE1 decreased proliferation, invasion and migration, and reduced the protein levels of N-cadherin, ERK, p38-MAPK and the phosphorylation of ERK and p38-MAPK, while reducing the protein level of E-cadherin in SKOV3 cells. Collectively, our study proved that the silencing of lncRNA CCHE1 could inhibit SKOV3 cell invasion and migration via inactivating the p38-MAPK signaling pathway.  相似文献   

14.
Xin YANG  Liqun LU  Li HUANG  Jing HE  Jie LV 《Biocell》2020,44(1):101-110
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological tumor caused by the malignant transformation of immature T-cell progenitor cells. Emerging studies have stated that microRNAs (miRNAs) may play key roles in T-ALL progression. This study aimed to investigate the roles of miR-145-3p in T-ALL cell proliferation, invasion, and apoptosis with the involvement of the nuclear factor-kappaB (NF-κB) signaling pathway. T-ALL Jurkat cells were harvested, and the expression of miR-145-3p and NF-κB-p65 was measured. Gain- and loss-of-functions of miR-145-3p and NF-κB-p65 were performed to identify their roles in the biological behaviors of Jurkat cells, including proliferation, apoptosis, and invasion. Consequently, the current study demonstrated that miR-145-3p was downregulated while NF-κB-p65 was up-regulated in Jurkat cells. miR-145-3p directly bound to the 3’ untranslated region of NF-κB-p65. Over-expression of miR-145-3p inhibited Jurkat cell proliferation, invasion, and resistance to apoptosis, while over-expression of NF-κB-p65 presented opposite trends. Co-transfection of miR-145-3p and NF-κB-p65 promoted the malignant behaviors of Jurkat cells compared to miR-145-3p transfection alone, while it reduced these behaviors of Jurkat cells compared to NF-κB-p65 transfection alone. Taken together, this study provided evidence that miR-145-3p could suppress proliferation, invasion, and resistance to the death of T-ALL cells via inactivating the NF- κB signaling pathway.  相似文献   

15.
16.
YUHUA ZOU  LEI ZHANG  XIN ZHONG 《Biocell》2022,46(5):1309-1317
Renal cell carcinoma (RCC) has a poor prognosis due to limited diagnosis and treatment. Thus, it is necessary to find novel prognostic biomarkers and therapeutic targets. The aberrant expression of microRNAs plays an important role in RCC oncogenesis. Tissue inhibitors of metalloproteinase 3 (TIMP3) acts as a downstream target of miR-181b. The aim of this study was to understand the role and molecular mechanism of miR-181b in RCC oncogenesis. The results showed that miR-181b expression was significantly higher in RCC tumour tissues, especially in those with significant invasion or metastasis. miR-181b overexpression promoted proliferation and migration of the RCC cell line 786-O, while miR-181b knockdown had the opposite effect. In addition, miR-181b was inversely correlated with TIMP3 expression in RCC tumour tissues. miR-181b overexpression reduced TIMP3 expression in RCC cell line 786-O or OS-RC-2, while miR-181b knockdown had the inverse effect. Mechanistically, a luciferase reporter assay confirmed the binding sites of miR-181b on the 3’-UTR of TIMP3, confirming the targeting effect of miR-181b on TIMP3. Overall, miR-181b promotes the development and progression of RCC by targeting TIMP3 expression, indicating the potential use of miR-181b in the diagnosis and treatment of RCC.  相似文献   

17.
Xiuchun ZHANG 《Biocell》2019,43(4):313-319
To investigate the effects of polydatin on the proliferation, migration, and invasion of ovarian cancer, the change of proliferative ability, migration ability, and invasive ability of human ovarian cancer cell OVCAR-3, A2780, and HO-8910 was detected by using polydatin and up-regulating PI3K. The anticancer activity and mechanism of polydatin in ovarian cancer were analyzed. Polydatin could effectively inhibit the proliferation, migration, and invasion of OVCAR-3, A2780, and HO-8910, and inhibit the expression of PI3K protein. After the expression level of PI3K protein was up-regulated, the inhibitory effect of polydatin on the proliferative ability, migration ability, and invasive ability of OVCAR-3, A2780, and HO-8910 significantly decreased, suggesting that PI3K was the target of polydatin. Therefore, we concluded that polydatin could inhibit the proliferation, migration, and invasion of ovarian cancer cells by inhibiting the expression of PI3K protein, which provides an experimental basis for polydatin in the treatment of ovarian cancer.  相似文献   

18.
KEWEI GAO  JIANGFENG HU  YI ZHOU  LIANG ZHU 《Biocell》2021,45(6):1521-1526
Increasing evidence proves that circular RNAs (circRNAs) play an important role in regulating the biological behaviors of tumors. The central purpose of this research was to investigate the functions of circRNA in gastric cancer. The utilization of real-time PCR was to test circPTN expression in gastric cancer cells. Cell counting colony formation assays, CCK-8 assay, and EdU assay were used to investigate proliferation. Transwell assay was applied to investigate migration. We discovered that circPTN was highly expressed in gastric cancer cells. Low expression of circPTN inhibits gastric cancer cell proliferation and migration. Elevated expression of circPTN promotes gastric cancer cell proliferation and migration. Moreover, we discovered that circPTN could accelerate self-renewal and increase the expression of stemness markers. The results of our study suggested that a high level of circPTN expression promotes the proliferation and stemness of gastric cancer cells.  相似文献   

19.
20.
Prolylcarboxypeptidase (PRCP) belongs to the S28 family of proteases, which is also a dipeptidyl peptidase. In this study, we demonstrate the expression pattern of PRCP in Non-small cell lung cancer (NSCLC). We found that the repression of PRCP expression by small interfering RNA successfully inhibited cell proliferation, migration, and invasion. Further, we explored the involvement of PRCP in the regulation of epithelial-mesenchymal transition (EMT). The epithelial marker E-cadherin was significantly increased, meanwhile mesenchymal markers MUC1, vimentin, and SNAIL were markedly decreased in PRCP knockdown cells. Moreover, the downregulation of PRCP in the NSCLC cells induced the expression of apoptosis-related proteins in vitro. We performed RT-PCR in 30 pairs of clinical NSCLC tissues and adjacent non-cancerous tissues, which revealed significantly higher PRCP expression levels in cancer tissues than in adjacent non-cancerous tissues. Collectively the results from our study suggest a possible cancer promotion role of PRCP in NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号