首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李朋 《机械强度》2020,42(1):221-227
针对采煤机截割部齿轮箱体在使用过程中出现的疲劳断裂问题,考虑由齿轮啮合引起的高频内部激励和由截割煤岩体引起的低频外部激励,进行疲劳失效机理分析。基于箱体力学模型,分析外部激励作用下箱体应力集中部位及应力峰值,并用有限元计算结果验证;力学模型考虑了由齿轮啮合产生的扭矩M_p及轴向力偏心L_0,分析了不同摇臂摆角下M_p和L_0对应力峰值的影响规律;基于采煤机截割实验,分析内部激励作用下箱体局部共振特性;将实测振动信号进行功率谱分析,得到局部共振频率并验证其为箱体固有频率;通过箱体应变模态分析,得到局部共振频率对应振型的应变分布特征并与应力集中部位进行比较。结果表明:M_p和L_0会增加箱体危险截面弯曲拉应力峰值;应力集中部位与局部共振振型应变集中部位基本一致;内部激励激发了箱体15,23和27阶振型的局部共振,拍振现象的产生加剧了箱体疲劳破坏;采煤机截割部齿轮箱体疲劳断裂是由外部激励引起的应力集中和内部激励引起的局部共振共同造成。  相似文献   

2.
局部共振是齿轮箱体发生疲劳破坏的重要原因,齿轮传动系统振动激励可能会引起箱体局部模态的振动耦合。以某型采煤机截割部悬臂齿轮箱体为研究对象,将有限元分析与现场测试结合,分析箱体在齿轮传动激励下的局部共振特性。利用Ansys建立箱体有限元模型,得到其固有频率及主要振动形态;基于采煤机空载测试,得到额定工况下箱体振动加速度并进行时域和频域分析;将实测信号频谱与有限元模型固有特性进行比较,得到箱体局部共振特性;选取箱体壁厚为设计变量,研究箱体壁厚对固有特性的影响,为避免局部共振提供可行的方法。结果表明:不同传动级啮频的组合形成了新的频率成分,其中部分频率可激发局部共振;同时改变上下箱体壁厚及行星头壁厚才能在使所有敏感固有频率避开激振频率;局部共振振型中应变大的部位会产生过大拉应力,是箱体疲劳破坏的原因之一。研究可为悬臂式齿轮箱体共振分析及优化设计提供一定的参考。  相似文献   

3.
《机械强度》2017,(5):1138-1144
针对采煤机截割部传动系统动态特性问题,从刚柔耦合多体动力学理论出发,根据采煤机截割部传动系统的传动原理和结构参数,对采煤机截割部传动系统动态特性问题进行研究。以RecurDyn软件为仿真平台建立了采煤机截割部齿轮传动系统刚柔耦合动力学模型。模型充分考虑传动轴各方向的柔性特征,以滚筒三向截割力为激励载荷,计算出传动系统中各齿轮啮合力、各轴应变及轴承连接处的接触。研究结果表明:第11对齿轮啮合力最大,为11 272 634.4N。轴承最大接触力发生位置为轴5上的轴承1,为912 317.98N。研究结果为传动系统的优化设计及疲劳寿命预测提供依据。  相似文献   

4.
齿轮箱箱体的力学特性直接影响着重型刮板输送机可控启动装置(CST)运行的可靠性。针对某型CST齿轮传动系统,采取动力学分析与试验研究相结合的手段,在额定载荷工况下,确定齿轮箱箱体的支承动反力及边界条件,分析其瞬态应力、振动响应特性,获取齿轮箱体的固有特性与刚度的薄弱位置;最后,开展CST齿轮箱加载试验,分析运转状态下箱体表面应力和振动信号及其频谱。分析表明,理论结果与实测数据具有一致性,箱体表面的最大动应力通常远小于其材料的许用应力,箱体和齿轮传动系统不会出现耦合共振现象,中间箱体为整个减速器箱体的刚度薄弱环节,且箱体在输出端的前部振动较大。研究结果为CST减速器结构的动态优化提供理论依据和数据支撑。  相似文献   

5.
针对近年来对采煤机工作可靠性要求越来越高的现状,以某型号采煤机滚筒为研究对象,借助ANSYS有限元仿真分析软件,对采煤机滚筒截割煤岩时受力状态进行分析.分析结果表明,采煤机滚筒截割煤岩稳定时所受三向力中以截割阻力和牵引阻力为主,侧向阻力在零附近波动,力矩状态与之相一致.经试验验证,仿真计算结果与滚筒实际工作过程的受力状态吻合,结果准确,表明本文的仿真分析结论可为采煤机结构优化工作提供技术参考.  相似文献   

6.
采煤机的使用寿命与截割部齿轮的可靠性有着密切的联系。基于ANSYS对某型采煤机截割部传动系统安全系数最小的第三级齿轮进行动力学及疲劳寿命分析,结果表明其满足使用要求。提出的方法为采煤机截割部齿轮的设计与优化提供了量化的依据,同时降低了新产品的研发成本与时间,具有较高的实用价值。  相似文献   

7.
基于刚柔耦合多体接触动力学理论,对采煤机截割部传动系统进行了系统的研究,并以Recur Dyn为平台建立了包含传动系统齿轮,轴承和传动轴的采煤机截割部模型。考虑传动轴的柔性特性,建立采煤机截割部刚柔耦合传动系统。对系统中各零件之间接触参数进行设定,并进行动力学仿真分析,直观动态的描述了采煤机传动系统的工作过程。研究结果表明:第12对齿轮啮合力最大,其值为1 808 210. 8 N。轴4应变值最大,为0. 081。揭示了刚柔耦合系统和刚性系统在齿轮啮合力曲线及其频域信息的不同之处,为传动系统的优化设计及疲劳寿命预测提供依据。  相似文献   

8.
本文在对采煤机截割驱动机构截割和齿轮副受力变化情况进行分析的基础上,提出了应用基于进给-截割联合调速系统对采煤机动态截割特性进行优化。该联合调速系统能够根据采煤机的实际截割作业状态,可实现对进给-截割状态的联合调整,在确保截割作业效率的情况下降低截割机构的冲击载荷、提升使用寿命和工作稳定性。应用效果表明,应用该联合调速系统,能够将截割机构的动载荷突变系数降低68.4%,显著提升了采煤机的运行稳定性。  相似文献   

9.
采煤机截割部传动系统实际工况时很容易受到瞬时冲击力,从而产生剧烈振动,加速其薄弱环节的疲劳损伤破坏。现有研究仅以空载或均匀载荷下分析其动力学响应,没有考虑实际工况外部激励载荷以及非线性轴承刚度对齿轮传动系统动力学性能的影响。本文运用LS-DYNA软件对实际工况下的采煤机截割部外部激励载荷进行仿真模拟,同时建立基于ADAMS的截割部齿轮传动系统刚柔耦合动力学模型。考虑截割部重载零部件的柔性效应、齿轮的啮合时变刚度、综合啮合误差、滚动轴承变刚度等因素,对实际工况下截割部齿轮传动系统各齿轮副的动态啮合力和各支撑轴的动态接触力进行分析,得到其在实际工况下的动力学响应。  相似文献   

10.
首先建立了采煤机斜切截煤运动数学模型,围绕斜切工况下采煤机截割机构及行走机构的受力特性进行了研究,对采煤机斜切工况下的行走轨迹,以及作用在截割机构上的力与作用在行走机构上的受力变化进行了仿真分析,以期优化采煤机截割机构和行走机构的结构,提升其工作稳定性和工作效率。  相似文献   

11.
采煤机截割部机电传动系统动力学特性分析   总被引:4,自引:1,他引:3  
针对采煤机截割机电传动系统动载荷大易于损坏的特点,提出一个行星齿轮变速过程扭转动力学模型,建立包含电动机、齿轮传动系统和滚筒的采煤机截割机电传动系统动力学模型,并对冲击载荷下采煤机截割机电传动系统的动力学特性进行仿真,研究电动机-齿轮传动系统的连接刚度和阻尼以及齿轮啮合刚度对采煤机截割机电传动系统动力学特性的影响,最后提出了减小采煤机截割部机电传动系统的动态啮合力冲击的方法,以减少采煤机截割传动系统的破坏。啮合冲击力可以分成两类:时变啮合刚度引起的啮合冲击力和冲击负载引起的啮合冲击力。可以通过减少啮合刚度的变化(比如采用人字齿轮)来降低时变啮合刚度引起的动态啮合力冲击;选取合适的电动机-齿轮传动系统连接阻尼和较小的电动机-齿轮传动系统连接刚度来减小冲击负载引起的动态啮合力冲击。  相似文献   

12.
《机械传动》2016,(2):95-99
为研究复杂煤层赋存条件下采煤机截割部行星减速机构的动态特性,建立了采煤机刚-柔耦合动态模型。对极端工况下的采煤机滚筒外负载进行了分析及动态模拟,在动态仿真分析软件Recur Dyn中进行了加载与虚拟仿真。对截割部行星减速机构中的内齿圈进行了受力分析,找到了最大等效应力位置并根据其受力情况进行了结构优化。对齿轮修形后的行星减速机构再次进行仿真,发现最大等效应力小于材料许用应力,并且齿面疲劳寿命得到了较大地提高,保证了采煤机可靠工作,为齿轮动力学研究提供了重要参考。  相似文献   

13.
针对某型内燃机车齿轮箱箱体出现裂纹的情况,建立齿轮箱箱体有限元模型,提出了一种根据实测动应力修正准静态叠加法的应力时间历程计算方法,对单位加速度激励下的响应进行修正。分别用准静态叠加法和基于实测动应力修正的准静态叠加法计算绝对值最大主应力时程,使用雨流计数法对应力时程进行循环计数,根据Miner累积损伤理论对齿轮箱箱体寿命进行预测,后者预测结果与实际结果较为接近。两种方法计算结果差异较大,初步推测所测齿轮箱体发生共振,并通过对比加速度谱的频谱分析结果与齿轮箱箱体模态分析结果进行了验证。该研究为齿轮箱箱体结构设计和优化时疲劳寿命的预测提供了参考。  相似文献   

14.
通过对采煤机截齿进行受力计算,得出其所受的牵引阻力及截割阻力,并对截齿的工作状态进行合理简化后,应用ANSYS有限元分析软件对建立的模型进行静力学分析。分析结果表明截齿刀头处受到等效应力最大,刀杆与刀头焊接处应变最大,应力和应变最大值发生位置的不同是造成刀头脱落的主要原因;截齿尾部外侧轮廓应力要高于内侧,外侧更容易发生破坏;沿着截齿横截面轮廓线应力分布结果表明,侧向力方向受力大,应变较大,侧向力反向方向应力变化较小,且两侧应力变化幅度较大。研究结果为提高截齿使用寿命和工作可靠性提供依据。  相似文献   

15.
采用MASTA软件与ANSYS软件相结合的方法,对箱体进行子结构分析,利用凝聚节点实现了传动系统和箱体的耦合连接,建立了大功率船用齿轮箱系统的动力学分析耦合模型。在对齿轮啮合刚度激励、传递误差激励和啮合冲击激励分析计算的基础上,对齿轮传动系统相啮合齿轮的动态啮合力进行了分析计算。并将该动态啮合力进行转换得到轴承处的动态力,施加在相应的凝聚节点上,对齿轮箱体的动响应进行了分析。  相似文献   

16.
使用侧臂传动式薄煤层采煤机可以有效地提高装煤效果,但侧臂传动式薄煤层采煤机截割部的自重大,工作中会出现耳环处损坏等现象。利用Pro/E软件建立采煤机截割部壳体三维模型并通过ANSYS Workbench软件对其进行有限元仿真分析,得到了截割部壳体的应力和位移的分布状态,并对其结构进行改进,有效提高了其局部强度;对截割部壳体进行模态分析,得到壳体前五阶的固有频率和相应的振动状态,指出易疲劳区域。为薄煤层采煤机截割部振动特性的分析以及其结构的设计、改进提供依据。  相似文献   

17.
为研究含间隙的采煤机截割部传动系统的非线性动力学特性,建立了考虑齿侧间隙的采煤机截割部齿轮系统动力学模型,并确立了模型中啮合刚度和阻尼的函数关系,运用变步长的Runge-Kuatt方法对动力学模型进行数值仿真,研究齿侧间隙对采煤机截割部传动系统各齿轮副啮合力的影响,结果表明:齿侧间隙增加了各齿轮副啮合力的变化量以及啮合频率倍频的幅值,齿侧间隙增大会增加啮合力的波动幅度会引起传动过程中的很大冲击力,加速齿面的磨损,同时齿侧间隙还会使齿轮由于过载而在齿轮中产生断齿。提高采煤机截割部齿轮传动系的稳定性与使用寿命,应降低其扭振程度与缩小齿侧间隙。本研究对齿轮传动系统的优化设计与研究提供理论基础。  相似文献   

18.
李朋 《机械强度》2020,42(3):585-590
斜切截割是长壁式综合机械化采煤工艺的一种工况,其目的是使采煤机深入煤壁切割煤炭。斜切截割时采煤机一部分深入煤壁,另一部分直行截割,因此承受较大弯矩,是一种恶劣工况。基于国家能源采掘装备研发实验中心实验台,对采煤机截割部齿轮箱在斜切截割工况下振动特性进行实验分析。实验模拟井下真实斜切截割工况,利用三向加速度传感器收集行星级和直齿级振动加速度数据。实验中发现了拍振现象,并分析了截割参数对拍振现象的影响规律。分析了齿轮传动系统各传动级啮合频率的耦合现象,并分析截割参数对频率耦合作用的影响规律。  相似文献   

19.
齿轮箱作为高速动车组牵引系统重要传动设备,在运用过程中主要承受来自于线路激扰的冲击作用,齿轮箱体出现了疲劳裂纹。以某型齿轮箱体为研究对象,统计开裂齿轮箱体的运营里程并对其进行疲劳断口分析,疲劳裂纹源发生于齿轮箱体内侧拐角处,该部位存在因齿轮箱体结构及凹坑等缺陷引起的应力集中。基于高速铁路线路测试,得到典型工况下轴箱、齿轮箱体的振动加速度信号及表面的动应力响应,并对齿轮箱体的自由模态进行分析研究。研究结果表明,列车高速直线运行时,轮轨激扰引起的齿轮箱体振动频率与其固有频率产生了交集,齿轮箱体产生局部共振,共振使齿轮箱体局部产生较高的动应力幅值,从而导致箱体出现裂纹。该研究对确保高速列车运用安全及齿轮箱体新型结构的设计提供参考。  相似文献   

20.
由于大型风电齿轮箱体积大、质量重,不同支撑方式下其箱体静力学特性及齿轮接触特性有所不同。以某型号大功率风电增速器为研究对象,以其极限载荷下性能参数为依据,利用有限元法研究不同支撑方式对风电增速器静力学影响,并对计算结果进行对比分析。结果表明,与增速器底部无支撑相比,当增速器底部有脚支撑时,增速器箱体应力和变形大大降低,增速器齿轮接触应力变化较小,第一级齿轮传动啮合错位量变化较大。研究结果可为大型风电增速齿轮箱的设计与优化提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号