首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Welding-based additive manufacturing can potentially produce a cost-effective process for the production of dense metallic parts. Tungsten inert gas (TIG) welding-based additive manufacturing process uses wire as a filler material and offers a high deposition rate with low spattering. In this study, different orientations of wire feeding nozzle and TIG welding torch, such as front wire feeding (FWF), back wire feeding (BWF), and side wire feeding (SWF), were investigated for thin-walled metal deposition with enhanced dimensional accuracy and mechanical properties. The dimensional accuracy of thin-walls deposited at four different orientations were investigated in terms of deposition height and deposition width. The FWF orientation with higher wire feeding angle and SWF orientation produced poor dimensional accuracy in the deposition. FWF orientation with normal wire feeding angle and BWF orientation provided a decent dimensional accuracy and surface appearance. The deposited samples exhibited a similar trend for Vickers microhardness, residual stress, and microstructure for the four different wire feeding orientations.  相似文献   

2.
The wire and arc-based additive manufacturing process applies arc welding technology; the wire material is melted by the arc discharge, and is then accumulated successively in this process. The wire and arc-based additive manufacturing process directly and locally adds material to the molten pool. By changing the material locally during the process, more than one kind of material can be used simultaneously in a single manufactured component. In this study, two kinds of dissimilar metal deposition were conducted. A combination used was a stainless steel and Ni-based alloy. Mechanical properties near the interface such as hardness and bond strength were investigated. As a result, it was found that the mechanical properties of the manufactured alloy were comparable to those of a bulk material. In addition, an additive manufacturing system and a torch path planning method for using more than two kinds of material were proposed. By using this method, highly functional shapes whose surfaces and inner structures are made of different material could be made.  相似文献   

3.
Wire and arc additive manufacturing (WAAM) shows a great promise for fabricating fully dense metal parts by means of melting materials in layers using a welding heat source. However, due to a large layer height produced in WAAM, an unsatisfactory surface roughness of parts processed by this technology has been a key issue. A methodology based on laser vision sensing is proposed to quantitatively calculate the surface roughness of parts deposited by WAAM. Calibrations for a camera and a laser plane of the optical system are presented. The reconstruction precision of the laser vision system is verified by a standard workpiece. Additionally, this determination approach is utilized to calculate the surface roughness of a multi-layer single-pass thin-walled part. The results indicate that the optical measurement approach based on the laser vision sensing is a simple and effective way to characterize the surface roughness of parts deposited by WAAM. The maximum absolute error is less than 0.15 mm. The proposed research provides the foundation for surface roughness optimization with different process parameters.  相似文献   

4.
Wire and arc additive manufacturing(WAAM) shows a great promise for fabricating fully dense metal parts by means of melting materials in layers using a welding heat source. However, due to a large layer height produced in WAAM, an unsatisfactory surface roughness of parts processed by this technology has been a key issue. A methodology based on laser vision sensing is proposed to quantitatively calculate the surface roughness of parts deposited by WAAM.Calibrations for a camera and a laser plane of the optical system are presented. The reconstruction precision of the laser vision system is verified by a standard workpiece. Additionally, this determination approach is utilized to calculate the surface roughness of a multi-layer single-pass thin-walled part. The results indicate that the optical measurement approach based on the laser vision sensing is a simple and effective way to characterize the surface roughness of parts deposited by WAAM. The maximum absolute error is less than 0.15 mm. The proposed research provides the foundation for surface roughness optimization with different process parameters.  相似文献   

5.
The wire feeding system for gas metal arc welding usually consists of a wire feeder and a torch. In many industries, the distance between the wire feeder and the torch is generally 3 m to 5 m. In a conventional wire feeder, a direct current (DC) motor is used for wire feeding. However, a significant problem with this system is the impossibility of feedback control because of inner or outer impedance. In this paper, a digital wire feeder was developed by using a DC encoder motor and a push-pull torch. An optimized wire-feeding system was also developed by experiment. The welding process was observed using a high-speed camera. The resulting wire-feeding system exhibits low spatter generation and arc stability.  相似文献   

6.
Shaped metal deposition method using gas tungsten arc welding is a novel manufacturing technology that can be used for fabricating solid dense parts in layered manufacturing. This paper reports for the first time using the pulsed current shaped metal deposition technique for fabricating components using cold wire of AISI 308LSi stainless steel. The aim of this work was to investigate and compare the effect of pulse frequency and other deposition process parameters on the morphology aspects and microstructure characteristics of the manufactured components using pulsed and continuous current processes. The obtained results reveal that the structure of the deposited specimens produced via pulsed arc current is generally having finer grains, high residual ferrite, and absence of columnar grains. Pulse frequency and current ratio have a significant influence on the surface morphology and microstructure of the manufactured parts. Good metallurgical bonding with no sensitization effects can be seen in all tested specimens. The presented additive layered manufacturing method can be recommended for near net-shaped processing of austenitic stainless steel components, and it can be used as an alternative manufacturing method for fabricating metal components with free defects, higher corrosion resistance, and superior mechanical properties.  相似文献   

7.
Shaped metal deposition (SMD) method would be an alternative way to traditional manufacturing methods, especially for complex featured and large scale solid parts and it is particularly used for aerospace structural components, manufacturing and repairing of die/molds and middle-sized dense parts. This method is implemented by depositing continuous cold or hot-water melted via welding arc plasma heat. This paper presents the designing, constructing, and controlling of an additive manufacturing system using TIG plus wire based Shaped metal deposition (TW-SMD) method. The aim of the current study is to design and develop an integrated system which is able to reduce time consuming and boring task of deposition process. The developed additive system is capable of producing near net shaped components of sizes not exceed 400 mm in 3 directions directly from CAD drawing. The results showed that the developed system succeeded to produce near net geometries and error-free depositions for various features of SS308LSi components. Additionally, workshop tests have been conducted in order to verify the capability and reliability of the developed AM system.  相似文献   

8.
This paper presents an algorithm to automatically generate optimal tool-paths for the wire and arc additive manufacturing (WAAM) process for a large class of geometries. The algorithm firstly decomposes 2D geometries into a set of convex polygons based on a divide-and-conquer strategy. Then, for each convex polygon, an optimal scan direction is identified and a continuous tool-path is generated using a combination of zigzag and contour pattern strategies. Finally, all individual sub-paths are connected to form a closed curve. This tool-path generation strategy fulfils the design requirements of WAAM, including simple implementation, a minimized number of starting-stopping points, and high surface accuracy. Compared with the existing hybrid method, the proposed path planning strategy shows better surface accuracy through experiments on a general 3D component.  相似文献   

9.
利用搭建的激光-熔化极惰性气体保护(Metal inert-gas,MIG)双丝复合焊接系统进行焊接试验。在试验中,主要研究激光功率、送丝速度、光丝间距和离焦量等几个主要变量对复合焊接稳定性、电弧特性和熔滴过渡的影响规律。分别选取电弧电压变异系数、电弧偏转角、熔滴过渡方式及过渡频率作为评价参量对稳定性、电弧特性和熔滴过渡进行分析。研究发现,随着激光功率增加,电弧偏转角先减小后增加,在1 000 W附近偏转角最小,焊接过程最稳定。引导丝熔滴始终为粗滴过渡,而跟随丝熔滴为粗滴过渡+少量短路过渡,熔滴过渡频率呈现先增加后下降的趋势。在送丝速度为4 m/min时引导丝和跟随丝的电弧稳定性最好,电弧偏转角先减小后增加最终趋于稳定。在离焦量为–1 mm时,引导丝和跟随丝熔滴过渡频率均达到最大值,分别为8.6Hz和6.3Hz。  相似文献   

10.
Wire and arc additive manufacturing (WAAM) is an emerging technology which has the potential to significantly reduce material usage and manufacturing time through the production of near net-shape components with high deposition rates. One of the main problems of this process is the residual stresses and distortions of the deposited workpiece. To help understand and optimise the process, finite element (FE) models are commonly used; however, the conventional transient models are not efficient for simulating a large-scale WAAM process. In this paper, the stress evolution during the thermal cycles of the WAAM process was investigated with the help of a transient thermomechanical FE model. It was found that the peak temperatures experienced during the thermal cycles of the WAAM process determine the residual stress of that point. Based on this finding, an efficient “engineering” FE model was developed. Compared to the conventional transient thermomechanical approach, this model can save the computational time by 99 %. This new model produced distortion and residual stress predictions that were nearly identical to the original transient model and the experimental results.  相似文献   

11.
Pulsed gas metal arc welding is one of the most widely used processes in the industry. It offers spray metal transfer at low average currents, high metal deposition rate, versatility, less distortion, and the ability to be used in automated robotic welding systems. The weld bead plays an important role in determining the mechanical properties of the weld. Its geometric parameters, viz., width, reinforcement height, and penetration, are decided according to the welding process parameters, such as wire feed rate, welding speed, pulse current magnitude, frequency (cycle time), etc. Therefore, to produce good weld bead geometry, it is important to set the proper welding process parameters. In the present paper, mathematical models that correlate welding process parameters to weld bead geometry are developed with experimental investigation. Taguchi methods are applied to plan the experiments. Five process parameters, viz., wire feed rate, plate thickness, pulse frequency, pulse current magnitude, and travel speed, are selected to develop the models using multiple regression analysis. The models developed were checked for their adequacy. Results of confirmation experiments show that the models can predict the bead geometry with reasonable accuracy.  相似文献   

12.
A high speed camera has been used to record and analyze the evolution as well as particle behavior in a single wire arc plasma spray torch. Commercially available systems (spray watch, DPV 2000, etc.) focus onto a small area in the spray jet. They are not designed for tracking a single particle from the torch to the substrate. Using high speed camera, individual particles were tracked and their velocities were measured at various distances from the spray torch. Particle velocity information at different distances from the nozzle of the torch is very important to decide correct substrate position for the good quality of coating. The analysis of the images has revealed the details of the process of arc attachment to wire, melting of the wire, and detachment of the molten mass from the tip. Images of the wire and the arc have been recorded for different wire feed rates, gas flow rates, and torch powers, to determine compatible wire feed rates. High speed imaging of particle trajectories has been used for particle velocity determination using time of flight method. It was observed that the ripple in the power supply of the torch leads to large variation of instantaneous power fed to the torch. This affects the velocity of the spray particles generated at different times within one cycle of the ripple. It is shown that the velocity of a spray particle depends on the instantaneous torch power at the time of its generation. This correlation was established by experimental evidence in this paper. Once the particles leave the plasma jet, their forward speeds were found to be more or less invariant beyond 40 mm up to 500 mm from the nozzle exit.  相似文献   

13.
Electrochemical machining (ECM) has become one of the most widely spread techniques of the non-traditional processes. The main problem of ECM is that of choosing the correct working parameters to attain a high degree of accuracy under fine surface finish conditions. Recently, electrochemical turning has gained attention as a finishing process. By feeding a shaped tool into a rotating workpiece, axially symmetric turned parts can be manufactured. In this way, large symmetric workpiece can be made with small tools. This paper discusses the feasibility of using a wire as a tool in electrochemical turning process (WECT). The present study measures the performance criteria of the WECT process through investigating the effect of working parameters, namely, applied voltage, wire feed rate, wire diameter, workpiece rotational speed, and overlap distance, on metal removal rate, surface roughness, and roundness error. The experimental results are statistically analyzed and modeled through response surface methodology. The regression model adequacies are checked using analysis of variance. Furthermore, the optimal combination of these parameters has been evaluated to maximize metal removal rate and minimize surface roughness and roundness error. The study reveals the ability of using a wire as a tool in WECT and its productivity; the shape errors can be controlled through the mentioned input parameters. The results show that the increase of wire feed rate enhances the productivity of the process and improves both surface quality and roundness error. Also, the increase of rotational speed improves both the productivity of the process and geometrical error of the produced parts.  相似文献   

14.
针对在轨制造功率约束与金属增材成形高能量输入的矛盾问题,提出一种激光焦耳复合热源金属细丝增材制造工艺,激光功率仅约50 W,成功制造了宽高比高达40的薄壁结构,使用焦耳热加热丝材可以大大减少激光的功率,从而控制总的热输入,并对成形过程进行有效的热量管理,引入热阻概念进行递变参数优化的方法,有效减小了增材制造特有的台阶效应,成形件表面质量好,表面粗糙度Ra小于5 μm,优于激光选区熔融(Selective laser melting,SLM)工艺,同时,成形件无气孔和裂纹等缺陷,成形件的抗拉强度、致密度以及硬度分布等性能指标,也很接近制造原材料。结果表明,该激光焦耳细丝沉积(Laser Joule fine wire deposition,LJ-FWD)工艺,可以成为高表面质量零件增材制造的一个有吸引力方案,特别适合应用于太空在轨增材制造的快速成形。  相似文献   

15.
高速旋转电弧传感器的数学模型   总被引:1,自引:0,他引:1  
以气保护焊接系统的数学模型和HALMOY焊丝熔化模型为基础,对高速旋转电弧传感器进行数学建模。利用该数学模型模拟焊接电流、弧长和焊丝伸出长度随时间的变化规律。实际焊接试验显示,模拟焊接电流与实际焊接电流波形高度吻合,说明建立的数学模型是准确的。结果表明,高速旋转电弧焊接时,弧长的变化较焊丝伸出长度的变化更为显著。利用每个电弧旋转周期内左半周与右半周平均电流值的差,可以判断焊枪的偏差量及其方向,同时还可根据平均电流值的大小来检测角接终止点。所建立的模型对于高速旋转电弧传感系统的设计具有指导意义。  相似文献   

16.
脉冲旁路耦合电弧熔化极惰性气体保护(Metal inert-gas, MIG)焊是一种新型的低热输入焊接方法,它通过特定的接法引入旁路电弧与主路电弧实现热、力的耦合,利用旁路电弧的分流作用,实现熔化母材热量与熔化焊丝热量的独立控制,从而在精确控制母材热输入的同时保证熔滴的自由过渡形式,可以实现铝-钢等异种金属的连接。为了理论分析不同焊接参数对焊接过程的影响,通过等效、线性化处理与迭代数值求解算法,建立可以正确描述焊接物理过程的动态数学解析模型;针对焊接过程中耦合电弧稳定性较差且直接影响焊接质量的问题,提出通过检测弧压波动的反馈信号、实时调节送丝速度、进而控制耦合电弧稳定性的闭环控制方案,并基于快速原型系统进行焊接过程控制仿真与试验。仿真结果表明,当焊接过程受到干扰后,采用闭环控制方案可以显著提高耦合电弧的稳定性;焊接试验证明了控制仿真的预测与分析,进行闭环控制后,焊接过程更加稳定同时得到了成形良好的铝-钢异种金属接头。  相似文献   

17.
Wire feed rate plays a vital role in determining the weld characteristics in gas metal arc welding (GMAW). The wire feed rate is affected by any change in welding current in the case of steady current GMA welding and by any change in frequency, peak current, base current and duration of peak and base currents in the case of pulsed GMA welding. To predict the wire feed rate for any set of these parameters, a mathematical model was developed from the results obtained by conducting experiments. Electrode resistance heating constant and arc resistance heating constant were also determined by fitting a regression model. The above parametric constants have been used to simulate the wire feed rates for pulsed GMA welding for different pulse parameters using MATLAB. The effects of pulse parameters on the burnoff factor and burnoff rates were also analysed. The investigation was carried out using AWS 5.22–95 filler wire of size 1.2 mm diameter and the base metal used was IS:2062 structural steel plate of 20 mm thickness. An argon and 5% CO2 gas mixture at a flow rate of 16 l/min was used for shielding throughout the welding.  相似文献   

18.
Optimization of a manufacturing process has to take into accounts all of the factors that influence the product quality and productivity. Optimization of welding process parameters is considerably complex because welding is a multi-variable process, which is influenced by a lot of process uncertainties. In this paper, a grey-based Taguchi method has been adopted to optimize the pulsed metal inert gas welding process parameters. Many quality characteristic parameters are combined into one integrated quality parameter by using grey relational grade or rank. The welding process parameters considered in this analysis are pulse voltage, background voltage, pulse frequency, pulse duty factor, wire feed rate, and table feed rate. The quality parameters considered are the tensile strength, bead geometry, transverse shrinkage, angular distortion, and deposition efficiency. Analysis of variance has been performed to find out the impact of individual process parameter on the quality parameters. If the tensile strength as the most important quality parameter is assigned a higher weight, then the pulse voltage was found to be the most influential process parameter. Experiments with the optimized parameter settings, which have been obtained from the analysis, are given to validate the results.  相似文献   

19.
研究激光和Ar+He混合气体中He气体体积分数对激光+双丝脉冲MAG复合焊焊接稳定性的影响。搭建激光+双丝脉冲熔化极活性气体保护(Metal active-gas, MAG)复合焊焊接系统,利用LabVIEW信号采集系统采集焊接电流和电弧电压波形,借助高速摄像系统同步拍摄电弧形态和熔滴过渡过程,实时监测焊接过程。观察后丝短路和前丝断弧情况并对前丝电弧电压进行单因素方差分析,研究Ar+He混合气体中He气体体积分数对焊接稳定性影响;比较焊接过程中激光的有无对熔滴过渡的影响,分析激光对焊接稳定性影响。结果发现随着He气体体积分数增大,后丝对应短路次数增多,当He气体体积分数为50%时,前丝出现断弧现象,大于50%,断弧时间随之增加,焊接稳定性变差;激光+双丝脉冲MAG复合焊和双丝脉冲MAG复合焊相比,加入激光可稳定电弧,为熔滴提供一附加力,该力促进熔滴过渡,使熔滴过渡尺寸减小,加大过渡频率,改善熔滴过渡,提高焊接稳定性。  相似文献   

20.
Manufacturing companies often fail to maintain good weld quality due to poor arc stability and distortion after welding. Weld quality can be improved by reducing the transverse shrinkage and the angular distortion in butt welding. The welding deposition efficiency is also an important economic factor. In this work, various pulse voltage parameters have been varied along with welding torch angle in pulsed metal inert gas (P-MIG) welding. The experimental results revealed that the peak voltage is the dominant pulse voltage parameter. Various sensors were also used to monitor arc current, arc voltage, arc sound, and also weld temperature. A strong relationship between arc sound (as well as arc power) and transverse distortion (as well as metal deposition) was found to exist in P-MIG welding. The frequency domain features of welding arc sound were also extracted and correlated to the process characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号