首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
采用大孔吸附树脂对鸡血藤原花青素进行纯化,并对原花青素纯度、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除活性及α-葡萄糖苷酶抑制活性进行评价。比较3 种大孔吸附树脂对原花青素静态吸附及解吸附能力,从D101、X-5及AB-8树脂筛选出X-5型树脂用于纯化。对X-5型树脂的动态吸附及解吸附条件进行优化,获得最适条件为:上样质量浓度6.00 mg/mL,上样流速2 BV/h,上样量10 BV,洗脱流速1 BV/h,洗脱剂用量2 BV。利用不同体积分数乙醇洗脱可得到不同纯度的原花青素,其中70%乙醇纯化物原花青素纯度最高,具有最强的DPPH自由基清除活性及α-葡萄糖苷酶抑制活性。相关性分析表明原花青素可能是鸡血藤抗氧化及抑制α-葡萄糖苷酶的主要活性成分。  相似文献   

2.
目的:探讨大孔树脂分离纯化迷迭香叶总黄酮及抗氧化活性。方法:选择6种类型大孔树脂,比较其吸附量、吸附率和解吸率,筛选最佳树脂,单因素分析最佳纯化工艺条件,检测迷迭香叶总黄酮体外抗氧化活性。结果:AB-8为最佳树脂,上样液浓度为2.25mg/mL,上样流速为3BV/h,pH为3.15,上样体积为1.5BV。以4BV 80%乙醇在流速2BV/h下洗脱,得黄酮的纯度为68.39%,精制倍数为3.37。迷迭香总黄酮对DPPH和ABTS自由基具有良好的清除能力。结论:AB-8树脂对迷迭香叶总黄酮具有良好的吸附和解吸效果,且迷迭香叶总黄酮具有良好的抗氧化作用。  相似文献   

3.
为了探索三叶青中原花青素的纯化工艺及其生物活性作用,制备经济高效的原花青素,比较5种大孔吸附树脂对三叶青原花青素静态吸附及解吸附能力,并对树脂的动态吸附及解吸附条件进行优化。同时,探讨乙醇洗脱对原花青素纯度及生物活性影响。结果表明,AB-8型树脂可用于三叶青中原花青素纯化,纯化三叶青原花青素的最适条件为:上样质量浓度6.00 mg/mL,上样流速2 BV/h,上样体积11 BV,洗脱流速1.5 BV/h,洗脱剂用量2 BV,70%乙醇吸附效果最好,纯化后的三叶青原花青素纯度达到97.31%±0.96%,比粗提物提高了2.2倍,1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除活性、ABTS+自由基清除活性及α-葡萄糖苷酶抑制活性得到了显著增强(P<0.05),并且与原花青素含量之间存在极显著相关性(P<0.01)。因此,AB-8树脂纯化法简单、高效,且三叶青原花青素具有较强的体外抗氧化活性以及α-葡萄糖苷酶抑制活性,为综合开发利用三叶青原花青素提供科学参考。  相似文献   

4.
采用大孔吸附树脂纯化樟树叶醇提液中木脂素类化合物。通过对比6种大孔树脂对樟树叶中木脂素吸附-解吸效果,从中筛选一种最适大孔吸附树脂作为纯化材料,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响,以及洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交试验优化大孔树脂纯化木脂素的工艺。试验结果表明,大孔树脂最佳吸附-解吸工艺条件为:7BV上样量、2.12mg/mL上样浓度、1.0 mL/min上样速率、80%乙醇洗脱剂、洗脱流速2BV/h,洗脱剂用量8BV,该条件下樟树叶中木脂素得率为66.68%,纯度为15.91%,表明该大孔树脂对于樟树叶中木脂素纯化效果较好。  相似文献   

5.
密蒙花黄酮的纯化及抗氧化活性研究   总被引:1,自引:0,他引:1  
为考察密蒙花黄酮纯化工艺参数,并评估密蒙花黄酮的抗氧化活性。以总黄酮含量为指标,采用大孔吸附树脂法对密蒙花黄酮进行纯化,考察5种不同类型大孔吸附树脂对密蒙花黄酮的动态吸附及解吸附能力,筛选出最佳树脂类型和纯化工艺,以1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picryl-hydrazyl,DPPH)自由基清除活性等4种抗氧化指标评价密蒙花抗氧化活性并与黄酮含量进行相关分析。筛选出X-5型树脂,并确定最佳纯化工艺为:样品上样质量浓度6.00 mg/mL,上样流速2 BV/h,上样量20 BV,解吸附流速1.5 BV/h,解吸附剂用量2 BV,80%乙醇解吸附效果最好。密蒙花粗提物经纯化后,其总黄酮、毛蕊糖苷和蒙花苷含量分别提高2.28倍、2.72倍和2.00倍,纯化后密蒙花抗氧化活性显著增强,且与黄酮含量之间存在显著相关性。筛选出大孔树脂法纯化密蒙花黄酮的最佳条件,黄酮对密蒙花抗氧化活性具有显著作用。  相似文献   

6.
探索大孔吸附树脂纯化野生椒蒿总黄酮的工艺和体外抗氧化活性。以总黄酮吸附量和解析量为响应值,考察7种不同的大孔吸附树脂对野生椒蒿总黄酮的吸附和解析能力,再通过动态吸附和解析试验优化工艺条件筛选出最佳的树脂类型为AB-8,并考察野生椒蒿总黄酮对ABTS+的清除能力。研究结果表明,AB-8型树脂对椒蒿总黄酮纯化的较佳工艺为:提取液黄酮质量浓度为1 mg/mL、pH4、上样流速2 BV/h、上样量5 BV、洗脱剂为体积分数60%的乙醇溶液、洗脱剂用量为4 BV。在最佳工艺条件下,纯化后的黄酮提取液浸膏中总黄酮含量由13.6%提高到52.4%。体外抗氧化活性试验表明,椒蒿总黄酮对ABTS+具有清除活性,且随着质量浓度的增加,清除活性有明显加强。  相似文献   

7.
本研究以提取挥发油后的高良姜残渣为原料提取黄酮,采用7种大孔树脂进行静态吸附和解吸试验,筛选出最佳分离纯化树脂,再通过柱层析的动态吸附和洗脱试验,优化出分离纯化条件,并测定纯化前后的黄酮纯度和抗氧化活性。结果表明,XDA-6树脂最适合分离纯化高良姜黄酮,最佳纯化条件为上样流速2 BV/h,上样液浓度2 mg/mL,上样液体积31.6 BV,洗脱液为70%(v/v)乙醇,洗脱液流速2.5 mL/min,洗脱液用量3.1 BV,在此条件下,黄酮的纯度由43.55%±0.15%提高到85.42%±0.64%;纯化后的高良姜黄酮对DPPH与超氧阴离子自由基的清除率和还原能力均有所提升,清除DPPH和超氧阴离子的IC50值分别由纯化前的0.014、0.222 mg/mL降低到纯化后的0.012、0.186 mg/mL。  相似文献   

8.
以龙牙楤木嫩芽提取物为原料,采用大孔树脂对其中黄酮类化合物进行纯化,并对其黄酮含量、1,1–二苯基–2–三硝基苯肼(1,1–diphenyl–2–picrylhydrazyl,DPPH)自由基清除活性进行测定。通过比较7种大孔树脂对龙牙楤木黄酮静态吸附及解吸能力,筛选出最适纯化黄酮的大孔吸附树脂AB–8,并进一步对AB–8的动态吸附及解吸条件进行优化,获得最适条件为:上样流速3 BV/h,上样浓度3.5 mg/mL,上样量3 BV;最佳洗脱条件为:乙醇洗脱剂流速1.0 BV/h,洗脱剂用量3 BV,洗脱剂体积分数为70%。在此工艺条件下,总黄酮含量由184 mg/g提升至754.4 mg/g。结果表明,大孔树脂AB–8适用于分离纯化龙牙楤木芽中总黄酮,且经纯化后的总黄酮含量提高了4.1倍,纯化后总黄酮对DPPH自由基清除能力的IC50值为0.51 mg/mL。  相似文献   

9.
采用超声波辅助提取法从调味香料排草中提取黄酮类化合物,并采用大孔树脂对黄酮粗品进行纯化,研究了其抗氧化活性。排草黄酮的最佳提取条件为:提取时间80min、温度50℃、乙醇浓度50%、料液比1∶40,在此条件下排草黄酮的得率为3.16%。最佳纯化条件为:HPD-100大孔树脂,上样液pH为4,上样流速为1.5BV/h,洗脱剂乙醇浓度为80%,洗脱流速为1.5BV/h。经纯化后排草黄酮的纯度由原来的24.8%提高到68.1%。排草黄酮显示了较强的清除DPPH自由基和抗氧化能力,但略低于维生素C,其IC50值为36.25μg/mL。  相似文献   

10.
采用硫酸—苯酚法测定多糖的含量,研究FL-3树脂对龙胆多糖的吸附和洗脱效果。以多糖的吸附率和解吸量为指标,对FL-3树脂纯化龙胆多糖的工艺条件进行了研究。结果表明,FL-3树脂对龙胆多糖的吸附和洗脱能力较好,最佳工艺条件为:上样浓度5 mg/mL、上样流速2BV/h、上样量4BV、洗脱流速2BV/h、用30%乙醇溶液200 mL集中洗脱。经过纯化后多糖的颜色变浅,多糖的含量从26.42%提高到71.29%,多糖回收率为49.52%。  相似文献   

11.
为制备红花籽粕抗氧化活性肽,比较不同酶解工艺下产物的抗氧化性,研究AB-8大孔树脂分离工艺,对比分离前后多肽抗氧化性,结果表明:碱性蛋白酶Alcalase酶解产物抗氧化性最佳,测得还原力为1.755,DPPH自由基清除率39.84%,羟自由基清除率26.76%、超氧阴离子自由基清除率25.90%,多肽含量达到10.71 mg/mL;选择AB-8树脂分离,采用上样流速3 BV/h、上样量24 mL、80%乙醇洗脱、洗脱流速1.00 mL/min工艺分离,且AB-8分离后样品的DPPH自由基清除率、羟自由基清除率、超氧阴离子自由基清除率均有增强。  相似文献   

12.
本研究采用纤维素酶辅助水蒸气蒸馏提取法提取佛手果皮精油,在以酶解pH、酶添加量、酶解温度及酶解时间作为单因素分析的基础上,通过Box-Behnken响应面设计法进行提取工艺优化。利用气相色谱-质谱(Gas Chromatography-Mass Spectrometry,GC-MS)法分析提取的精油的化学组成,最后以ABTS+·和DPPH·清除率为指标,评价佛手果皮精油的抗氧化活性。结果表明,佛手果皮精油最佳提取工艺为:酶解pH5.2、酶添加量0.7%、酶解温度52℃、酶解时间2.1 h,此条件下精油得率为3.11%。从提取的果皮精油中共鉴定出42种化合物,其中乙酸芳樟酯的相对含量最高(14.72%),其次为d-柠檬烯(14.58%)、芳樟醇(8.89%)。抗氧化活性研究结果显示:该法提取的佛手果皮精油在试验浓度范围内具有良好的抗氧化活性,并呈现明显量效关系。当精油浓度为40 mg/mL时,其对ABTS+·的清除率为91.20%;浓度达70 mg/mL时,其对DPPH·的清除率达93.19%。此优化工艺精油得率高,且佛手果皮精油其可作为天然抗...  相似文献   

13.
以棘胸蛙腿部肌肉为研究材料,利用木瓜蛋白酶和酸性蛋白酶两种酶,以成品率和水解度为指标,通过单因素结合响应面分析的方法优化棘胸蛙水解物的酶解工艺,同时对棘胸蛙水解物抗氧化能力进行研究。结果表明,棘胸蛙水解物经木瓜蛋白酶和酸性蛋白酶的最佳酶解条件为:在各酶最适pH和温度的条件下,料液比为1:15(g/mL)、酶解时间4 h、加酶量为2%(m/m);该工艺条件下,棘胸蛙水解物的水解度分别为19.23%、23.51%,成品率分别为22.66%、15.32%,清除DPPH自由基的IC50值分别为2.61、2.95 mg/mL,清除ABTS+自由基的IC50值分别为3.46、3.20 mg/mL,清除羟基自由基的IC50值分别为8.20、9.23 mg/mL。综上,通过响应面法优化的棘胸蛙水解物酶解工艺方便可行,制备得到的水解物具有较强抗氧化活性,为棘胸蛙资源的开发提供了理论基础。  相似文献   

14.
以珍珠龙胆石斑鱼肉为原料,利用蛋白酶酶解制备生物活性肽。以水解度和DPPH自由基清除率为指标,在单因素实验的基础上采用响应面分析法优化制备工艺。并采用超滤法对酶解产物进行分离纯化,同时进行抗氧化活性探究。结果表明:珍珠龙胆石斑鱼肉酶解工艺条件为:采用风味蛋白酶,酶添加量1050 U/g,在pH7.0、53℃、料水比1:3.5条件下酶解5.5 h,水解度为9.99%±0.39%。酶解产物与超滤组分均具有较强DPPH自由基清除能力,其IC50值在0.63~0.88 mg/mL之间;EH-2(5~8 kDa)和EH-3(3~5 kDa)有较强的羟基自由基清除能力,其IC50值分别为16.94和16.38 mg/mL;酶解产物与超滤组分均具有还原能力,且酶解产物还原能力最佳。优化的珍珠龙胆石斑鱼肉肽的酶法制备工艺合理且可行,其酶解产物与超滤组分具有较强的抗氧化性,可作为功能食品的基料应用。  相似文献   

15.
在12种大孔树脂静态吸附和解吸、静态吸附动力学基础上,研究上样液、洗脱剂乙醇浓度对较优大孔树脂动态吸附和解吸率的影响,并以维生素C和芦丁为对照,对甜茶叶粗黄酮与精黄酮的清除DPPH·能力和总抗氧化能力(T-AOC)进行对比分析。结果表明,HPD-450大孔树脂为甜茶叶总黄酮分离纯化的最佳大孔树脂,其最佳纯化工艺条件为:上样液质量浓度为1.2875 mg/mL,上样量100 mL (上样量体积与树脂质量比为10:3),上样液以1.5 BV/h流速上柱,依次用2 BV水洗脱,170 mL 55%乙醇洗脱。纯化后精黄酮纯度为31.79%,回收率为90.49%。甜茶叶粗黄酮、甜茶叶精黄酮、维生素C、芦丁对DPPH·的IC50值分别为0.0187、0.0202、0.0175和0.0265 mg/mL,表明甜茶叶粗黄酮比甜茶叶精黄酮具有较强的清除DPPH·能力,甜茶叶粗黄酮、精黄酮对DPPH·清除能力均低于维生素C而高于芦丁。从总抗氧化能力(T-AOC)效果评判,在0.02 mg/mL浓度组内,甜茶叶粗黄酮总抗氧化能力显著(P<0.05)大于其他;在0.03、0.04 mg/mL浓度组内,甜茶叶粗黄酮总抗氧化能力大于甜茶叶精黄酮但两者差异不显著,而两者均显著(P<0.05)大于维生素C。  相似文献   

16.
为研究大孔树脂分离和纯化桑叶多糖的最佳工艺及抑菌活性。以超声-微波协同提取的桑叶多糖为原料,考察8种不同类型大孔树脂的比吸附量、吸附率及解吸率,筛选出最佳纯化树脂类型为AB-8,对其吸附和解吸条件进行考察和优化,经过单因素试验,确定最优纯化工艺参数,并用牛津杯法考察桑叶多糖纯化前后的抑菌效果。结果显示,最优工艺参数为:上样液浓度为3.0 mg/mL、pH 4.0、上样流速为1.5 BV/h;解吸液乙醇体积分数为65%、pH 6.0、洗脱流速为1.5 BV/h、洗脱体积为90 mL(3.0 BV)。此工艺可将桑叶多糖粗品的纯度由11.34%提高到57.46%,提高4.07倍。抑菌试验结果表明:浓度大于1.0 mg/mL桑叶多糖对大肠杆菌、沙门氏菌、金黄色葡萄球菌的活性均存在不同程度的抑制作用,且纯化后抑菌作用显著增强。  相似文献   

17.
目的对采用大孔吸附树脂法分离纯化茶叶籽饼粕中茶皂素的工艺进行优化,为进一步开发利用茶叶籽资源提供依据。方法以茶皂素吸附率与解吸率为指标,通过静态吸附与解吸实验筛选最优树脂。通过单因素实验、正交实验及验证性实验,优化最优树脂动态吸附与解吸茶皂素的工艺参数。结果D101树脂的静态吸附量与解吸率分别为142.974 mg/g和98.02%,为分离纯化料液中茶皂素的最优树脂;当主要考虑茶皂素得率时,其最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速3 BV/h、上样体积6 BV、乙醇洗脱体积浓度80%、洗脱流速3 BV/h、洗脱剂体积5 BV,在该工艺参数条件下,茶皂素得率为74.25%,纯度为84.30%;当主要考虑茶皂素纯度时,最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速4 BV/h、上样体积7 BV、乙醇洗脱体积浓度70%、洗脱流速3 BV/h、洗脱体积5 BV,在该工艺参数条件下,茶皂素纯度为97.7%,得率为72.04%。结论 D101大孔吸附树脂是一种可应用于茶叶籽饼粕中茶皂素分离纯化的较好树脂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号