首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our aim was to estimate genetic parameters of atypical reproductive patterns and estimate their genetic correlation with milk production and classical fertility traits for commercial dairy cows. In contrast with classical fertility traits, atypical reproductive patterns based on in-line milk progesterone profiles might have higher heritability and lower genetic correlation with milk production. We had in-line milk progesterone profiles available for 12,046 cycles in 4,170 lactations of 2,589 primiparous and multiparous cows (mainly Holstein Friesian) from 14 herds. Based on progesterone profiles, 5 types of atypical reproductive patterns in a lactation were defined: delayed ovulation types I and II, persistent corpus luteum types I and II, and late embryo mortality. These atypical patterns were detected in 14% (persistent corpus luteum type II) to 21% (persistent corpus luteum type I) of lactations. In 47% of lactations, at least 1 atypical pattern was detected. Threshold model heritabilities for atypical reproduction patterns ranged between 0.03 and 0.14 and for most traits were slightly higher compared with classical fertility traits. The genetic correlation between milk yield and calving interval was 0.56, whereas genetic correlations between milk yield and atypical reproductive patterns ranged between ?0.02 and 0.33. Although most of these correlations between milk yield and atypical reproductive patterns are still unfavorable, they are lower compared with the correlations between classical fertility traits and milk yield. Therefore selection against atypical reproductive patterns may relax some constraints in current dairy breeding programs, to enhance genetic progress in both fertility and milk yield at a steady pace. However, as long as the target trait for fertility is calving interval, atypical reproductive patterns will not add additional value to the breeding goal in the near future due to the low number of available records.  相似文献   

2.
Milk protein concentration in dairy cows has been positively associated with a range of measures of reproductive performance, and genetic factors affecting both milk protein concentration and reproductive performance may contribute to the observed phenotypic associations. It was of interest to assess whether these beneficial phenotypic associations are accounted for or interact with the effects of estimated breeding values for fertility. The effects of a multitrait estimated breeding value for fertility [the Australian breeding value for daughter fertility (ABV fertility)] on reproductive performance were also of interest. Interactions of milk protein concentration and ABV fertility with the interval from calving date to the start of the herd's seasonally concentrated breeding period were also assessed. A retrospective single cohort study was conducted using data collected from 74 Australian seasonally and split calving dairy herds. Associations between milk protein concentration, ABV fertility, and reproductive performance in Holstein cows were assessed using random effects logistic regression. Between 52,438 and 61,939 lactations were used for analyses of 4 reproductive performance measures. Milk protein concentration was strongly and positively associated with reproductive performance in dairy cows, and this effect was not accounted for by the effects of ABV fertility. Increases in ABV fertility had important additional beneficial effects on the probability of pregnancy by wk 6 and 21 of the herd's breeding period. For cows calved before the start of the breeding period, the effects of increases in both milk protein concentration and ABV fertility were beneficial regardless of their interval from calving to the start of the breeding period. These findings demonstrate the potential for increasing reproductive performance through identifying the causes of the association between milk protein concentration and reproductive performance and then devising management strategies to capitalize on them. Research should be conducted to understand the component of the relationship not captured by ABV fertility.  相似文献   

3.
This study assessed the extent of reproductive losses and associated genetic parameters in dairy cattle, using in-line milk progesterone records for 14 Swedish herds collected by DeLaval's Herd Navigator. A total of 330,071 progesterone samples were linked to 10,219 inseminations (AI) from 5,238 lactations in 1,457 Swedish Red and 1,847 Swedish Holstein cows. Pregnancy loss traits were defined as early embryonic loss (1–24 d after AI), late embryonic loss (25–41 d after AI), fetal loss (42 d after AI until calving), and total pregnancy loss (from d 1 after AI until calving). The following classical fertility traits were also analyzed: interval from calving to first service, interval from calving to last service, interval between first and last service, calving interval, and number of inseminations per service period. Least squares means with standard error (LSM ± SE), heritabilities, and genetic correlations were estimated in a mixed linear model. Fixed effects included breed, parity (1, 2, ≥3), estrus cycle number when the AI took place, and a linear regression on 305-d milk yield. Herd by year and season of AI, cow, and permanent environmental effect were considered random effects. Extensive (approximately 45%) early embryonic loss was found, but with no difference between the breeds. Swedish Red was superior to Swedish Holstein in the remaining pregnancy loss traits with, respectively: late embryonic loss of 6.1 ± 1.2% compared with 13.3 ± 1.1%, fetal loss of 7.0 ± 1.2% compared with 12.3 ± 1.2%, and total pregnancy loss of 54.4 ± 1.4% compared with 60.6 ± 1.4%. Swedish Red also had shorter calving to first service and calving to last service than Swedish Holstein. Estimated heritability was 0.03, 0.06, and 0.02 for early embryonic, late embryonic, and total pregnancy loss, respectively. Milk yield was moderately genetically correlated with both early and late embryonic loss (0.52 and 0.39, respectively). The pregnancy loss traits were also correlated with several classical fertility traits (?0.46 to 0.92). In conclusion, Swedish Red cows had lower reproductive loss during late embryonic stage, fetal stage, and in total, and better fertility than Swedish Holstein cows. The heritability estimates for pregnancy loss traits were of the same order of magnitude as previously reported for classical fertility traits. These findings could be valuable in work to determine genetic variation in reproductive loss and its potential usefulness as an alternative fertility trait to be considered in genetic or genomic evaluations.  相似文献   

4.
5.
The objectives of this study were to estimate genetic parameters for fertility of Brown Swiss cattle, considering reproductive measures in different parities as different traits, and to estimate relationships between production traits of first lactation and fertility of heifers and first-parity and second-parity cows. Reproductive indicators were interval from parturition to first service, interval from first service to conception, interval from parturition to conception, number of inseminations to conception, conception rate at first service, and nonreturn rate at 56 d after first service. Production traits were peak milk yield (pMY), lactation milk yield, and lactation length (LL). Data included 37,546 records on heifers, and 24,098 and 15,653 records on first- and second-parity cows, respectively. Cows were reared in 2,035 herds, calved from 1999 to 2007, and were progeny of 527 AI bulls. Gibbs sampling was implemented to obtain (co)variance components using both univariate and bivariate threshold and censored linear sire models. Estimates of heritability for reproductive traits in heifers (0.016 to 0.026) were lower than those in first-parity (0.017 to 0.142) and second-parity (0.026 to 0.115) cows. Genetic correlations for fertility in first- and second-parity cows were very high (>0.920), whereas those between heifers and lactating cows were moderate (0.348 to 0.709). The latter result indicates that fertility in heifers is a different trait than fertility in lactating cows, and hence it cannot be used as robust indicator of cow fertility. Heifer fertility was not related to production traits in first lactation (genetic correlations between −0.215 and 0.251). Peak milk yield exerted a moderate and unfavorable effect on the interval from parturition to first service (genetic correlations of 0.414 and 0.353 after first and second calving, respectively), and a low and unfavorable effect on other fertility traits (genetic correlations between −0.281 and 0.295). Infertility after first calving caused a strong elongation of the lactation, and LL was negatively correlated with fertility of cows after second calving, so that LL can itself be regarded as a measure of fertility. Lactation milk yield depends on both pMY and LL, and, as such, is a cause and consequence of (in)fertility.  相似文献   

6.
Genetic evaluations decompose an observed phenotype into its genetic and nongenetic components; the former are termed BLUP with the solutions for the systematic environmental effects in the statistical model termed best linear unbiased estimates (BLUE). Geneticists predominantly focus on the BLUP and rarely consider the BLUE. The objective of this study, however, was to define and quantify the association between 8 herd-level characteristics and BLUE for 6 traits in dairy herds, namely (1) age at first calving, (2) calving to first service interval (CFS), (3) number of services, (4) calving interval (CIV), (5) survival, and (6) milk yield. Phenotypic data along with the fixed and random effects solutions were generated from the Irish national multi-breed dairy cow fertility genetic evaluations on 3,445,557 cows; BLUE for individual contemporary groups were collapsed into mean herd-year estimates. Data from 5,707 spring-calving herds between the years 2007 and 2016 inclusive were retained; association analyses were undertaken using linear mixed multiple regression models. Pearson coefficient correlations were used to quantify the relationships among individual trait herd-year BLUE, and transition matrices were used to understand the dynamics of mean herd BLUE estimates over years. Based on the mean annual trends in raw, BLUP, and BLUE, it was estimated that BLUE were associated with at least two-thirds of the improvement in CIV and milk production over the past 10 yr. Milk recording herds calved heifers for the first time on average 15 d younger, had an almost 2 d longer CFS but 2.3 d shorter CIV than non-milk-recording herds. Larger herd sizes were associated with worse BLUE for both CFS and CIV. Expanding herds and herds that had the highest proportion of cows born on the farm itself, on average, calved heifers younger and had shorter CIV. By separating the raw performance of a selection of herds into their respective BLUE and BLUP, it was possible to identify herds with inferior management practices that were being compensated by superior genetics; similarly, herds were identified with superior BLUE, but because of their inferior genetic merit, were not reaching their full potential. This suggests that BLUE could have a pivotal role in a tailored decision support tool that would enable producers to focus on the most limiting factor hindering them from achieving their maximum performance.  相似文献   

7.
High milk production in dairy cattle can have negative side effects on health and fertility traits. This paper explores the genetic relationship of milk yield with health and fertility depending on herd environment. A total of 71,720 lactations from heifers calving in 1997 to 1999 in the Netherlands were analyzed. Herd environment was described by 4 principal components: intensity, average fertility, farm size, and relative performance indicating whether herds had good (poor) health and fertility despite a high (low) production. Fertility was evaluated by days to first service and number of inseminations (NINS); somatic cell score was used as a measure of udder health. Data were analyzed with a multitrait reaction norm model. Genetic correlation within traits across environments ranged from 0.84 to unity. Genetic correlations of the 3 traits with milk yield were antagonistic but varied over environments. Genetic correlation of milk yield with days to first service varied from 0.30 in small herds to 0.48 in herds with low average fertility. Correlations with NINS varied from 0.18 in large herds to 0.64 in high fertility herds, and with somatic cell score from 0.25 in herds with a high fertility relative to production to 0.47 in herds with a relative low fertility. Selection in environments of average value resulted in different predicted responses over environments. For example, selection for a decrease of NINS of 0.1 in an average production environment decreased milk yield by 35 kg in low production herds, but by 178 kg in high production herds.  相似文献   

8.
《Journal of dairy science》2023,106(3):1910-1924
The objectives of this study were to estimate the genetic and phenotypic correlations and heritabilities for milk production and fertility traits in spring-calved once-daily (OAD) milking cows for the whole season in New Zealand and compare those estimates with twice-daily (TAD) milking cows. Data used in the study consisted of 69,252 first parity cows from the calving seasons 2015–2016 to 2017–2018 in 113 OAD and 531 TAD milking herds. Heritability estimates for production and fertility traits were obtained through single-trait animal models, and estimates of genetic and phenotypic correlations were obtained through bivariate animal models. Heritability estimates of production traits varied from 0.26 to 0.61 in OAD and from 0.13 to 0.63 in TAD. Heritability estimates for fertility traits were low in both OAD and TAD milking cow populations, and estimates were consistent (OAD: 0.01 to 0.10 and TAD: 0.01 to 0.08) across milking regimens. Estimates of phenotypic and genetic correlations among production traits were consistent across populations. In both populations, phenotypic correlations between milk production and fertility traits were close to zero, and most of the genetic correlations were antagonistic. In OAD milking cows, genetic correlations of milk and lactose yields with the start of mating to conception, 6-wk in-calf, not-in-calf, and 6-wk calving rate were close to zero. Interval from first service to conception was negatively genetically correlated with milk and lactose yields in OAD milking cows. Protein percentage was positively genetically correlated with 3-wk and 6-wk submission, 3-wk in-calf, 6-wk in-calf, first service to conception, 3-wk calving, and 6-wk calving rate in the TAD milking cow population, but these correlations were low in the OAD milking cow population. Further studies are needed to understand the relationship of protein percentage and fertility traits in the OAD milking system. The phenotypic correlations between fertility traits were similar in OAD and TAD milking populations. Genetic correlations between fertility traits were strong (≥0.70) in cows milked TAD, but genetic correlations varied from weak to strong in cows milked OAD. Further research is required to evaluate the interaction between genotype by milking regimen for fertility traits in terms of sire selection in the OAD milking cow population.  相似文献   

9.
Automatic milking systems record an enormous amount of data on milk yield and the cow itself. These type of big data are expected to contain indicators for health and resilience of cows. In this study, the aim was to define and estimate heritabilities for traits related with fluctuations in daily milk yield and to estimate genetic correlations with existing functional traits, such as udder health, fertility, claw health, ketosis, and longevity. We used daily milk yield records from automatic milking systems of 67,025 lactations in the first parity from 498 herds in the Netherlands. We defined 3 traits related to the number of drops in milk yield using Student t-tests based on either a rolling average (drop rolling average) or a regression (drop regression) and the natural logarithm of the within-cow variance of milk yield (LnVar). Average milk yield was added to investigate the relationships between milk yield and these new traits. ASReml was used to estimate heritabilities, breeding values (EBV), and genetic correlations among these new traits and average milk yield. Approximate genetic correlations were calculated using correlations between EBV of the new traits and existing EBV for health and functional traits correcting for nonunity reliabilities using the Calo method. Partial genetic correlations controlling for persistency and average milk yield and relative contributions to reliability were calculated to investigate whether the new traits add new information to predict fertility, health, and longevity. Heritabilities were 0.08 for drop rolling average, 0.06 for drop regression, and 0.10 for LnVar. Approximate genetic correlations between the new traits and the existing health traits differed quite a bit, with the strongest correlations (?0.29 to ?0.52) between LnVar and udder health, ketosis, persistency, and longevity. This study shows that fluctuations in daily milk yield are heritable and that the variance of milk production is best among the 3 fluctuations traits tested to predict udder health, ketosis, and longevity. Using the residual variance of milk production instead of the raw variance is expected to further improve the trait to breed healthy, resilient, and long-lasting dairy cows.  相似文献   

10.
《Journal of dairy science》2019,102(12):11225-11232
The main objective of this study was to assess the genetic background of colostrum yield and quality traits after calving in Holstein dairy cows. The secondary objective was to investigate genetic and phenotypic correlations among laboratory-based and on-farm–measured colostrum traits. The study was conducted in 10 commercial dairy herds located in northern Greece. A total of 1,074 healthy Holstein cows with detailed pedigree information were examined from February 2015 to September 2016. All cows were clinically examined on the day of calving and scored for body condition. All 4 quarters were machine-milked, and a representative and composite colostrum sample was collected and examined. Colostrum total solids (TS) content was determined on-farm using a digital Brix refractometer. Colostrum fat, protein, and lactose contents were determined using an infrared milk analyzer, and energy content was calculated using National Research Council (2001) equations. Dry period length (for cows of parity ≥2), milk yield of previous 305-d lactation (for cows of parity ≥2), age at calving, parity number, season of calving, time interval between calving and first colostrum milking, and milk yield were recorded. Each trait (colostrum yield and quality traits) was analyzed with a univariate mixed model, including fixed effects of previously mentioned factors and the random animal additive genetic effect. All available pedigrees were included in the analysis, bringing the total animal number to 5,662. Estimates of (co)variance components were used to calculate heritability for each trait. Correlations among colostrum traits were estimated with bivariate analysis using the same model. Mean percentage (±SD) colostrum TS, fat, protein, and lactose contents were 25.8 ± 4.7, 6.4 ± 3.3, 17.8 ± 4.0, and 2.2 ± 0.7%, respectively; mean energy content was 1.35 ± 0.3 Mcal/kg and mean colostrum yield was 6.18 ± 3.77 kg. Heritability estimates for the above colostrum traits were 0.27, 0.21, 0.19, 0.15, 0.22, and 0.04, respectively. Several significant genetic and phenotypic correlations were derived. The genetic correlation of TS content measured on-farm with colostrum protein was practically unity, whereas the correlation with energy content was moderate (0.61). Fat content had no genetic correlation with TS content; their phenotypic correlation was positive and low. Colostrum yield was not correlated genetically with any of the other traits. In conclusion, colostrum quality traits are heritable and can be amended with genetic selection.  相似文献   

11.
The aim of this project was to investigate the relationship of milk urea nitrogen (MUN) with 3 milk production traits [milk yield (MY), fat yield (FY), protein yield (PY)] and 6 fertility measures (number of inseminations, calving interval, interval from calving to first insemination, interval from calving to last insemination, interval from first to last insemination, and pregnancy at first insemination). Data consisted of 635,289 test-day records of MY, FY, PY, and MUN on 76,959 first-lactation Swedish Holstein cows calving from 2001 to 2003, and corresponding lactation records for the fertility traits. Yields and MUN were analyzed with a random regression model followed by a multi-trait model in which the lactation was broken into 10 monthly periods. Heritability for MUN was stable across lactation (between 0.16 and 0.18), whereas MY, FY, and PY had low heritability at the beginning of lactation, which increased with time and stabilized after 100 d in milk, at 0.47, 0.36, and 0.44, respectively. Fertility traits had low heritabilities (0.02 to 0.05). Phenotypic correlations of MUN and milk production traits were between 0.13 (beginning of lactation) and 0.00 (end of lactation). Genetic correlations of MUN and MY, FY, and PY followed similar trends and were positive (0.22) at the beginning and negative (−0.15) at the end of lactation. Phenotypic correlations of MUN and fertility were close to zero. A surprising result was that genetic correlations of MUN and fertility traits suggest a positive relationship between the 2 traits for most of the lactation, indicating that animals with breeding values for increased MUN also had breeding values for improved fertility. This result was obtained with a random regression model as well as with a multi-trait model. The analyzed group of cows had a moderate level of MUN concentration. In such a population MUN concentration may increase slightly due to selection for improved fertility. Conversely, selection for increased MUN concentration may improve fertility slightly.  相似文献   

12.
Various studies have validated that genetic divergence in dairy cattle translates to phenotypic differences; nonetheless, many studies that consider the breeding goal, or associated traits, have generally been small scale, often undertaken in controlled environments, and they lack consideration for the entire suite of traits included in the breeding goal. Therefore, the objective of the present study was to fill this void, and in doing so, provide producers with confidence that the estimated breeding values (EBV) included in the breeding goal do (or otherwise) translate to desired changes in performance among commercial cattle; an additional outcome of such an approach is the identification of potential areas for improvements. Performance data on 536,923 Irish dairy cows (and their progeny) from 13,399 commercial spring-calving herds were used. Association analyses between the cow's EBV of each trait included in the Irish total merit index for dairy cows (which was derived before her own performance data accumulated) and her subsequent performance were undertaken using linear mixed models; milk production, fertility, calving, maintenance (i.e., liveweight), beef, health, and management traits were all considered in the analyses. Results confirm that excelling in EBV for individual traits, as well as on the total merit index, generally delivers superior phenotypic performance; examples of the improved performance for genetically elite animals include a greater yield and concentration of both milk fat and milk protein, despite a lower milk volume, superior reproductive performance, better survival, improved udder and hoof health, lighter cows, and fewer calving complications; all these gains were achieved with minimal to no effect on the beef merit of the dairy cow's progeny. The associated phenotypic change in each performance trait per unit change in its respective EBV was largely in line with the direction and magnitude of expectation, the exception being for calving interval. Per unit change in calving interval EBV, the direction of phenotypic response was as anticipated but the magnitude of the response was only half of what was expected. Despite the deviation from expectation between the calving interval EBV and its associated phenotype, a superior total merit index or a superior fertility EBV was indeed associated with an improvement in all detailed fertility performance phenotypes investigated. Results substantiate that breeding is a sustainable strategy of improving phenotypic performance in commercial dairy cattle and, by extension, profit.  相似文献   

13.
The aims of the study were to evaluate the relationships among milk urea nitrogen and nonreturn rates at the phenotypic scale, and to estimate genetic parameters among milk urea nitrogen, milk yield, and fertility traits in the early period of lactation. Milk yield, protein percentage, the interval from calving to first service, and 56- and 90-d nonreturn rates were available from 73,344 Holstein cows from 2,178 different herds located in a region in northwestern Germany. Generalized linear models with a logit link function were applied to assess the phenotypic relationships. Bivariate threshold-threshold, linear-threshold, and linear-linear models, fitted in a Bayesian framework, were used to estimate genetic correlations among traits. Milk yield, protein percentage, and milk urea nitrogen were means from test-day 1 (on average 20.8 d in milk) and test-day 2 (on average 53.1 d in milk) after calving. An increase in milk urea nitrogen was associated with decreasing 56-d nonreturn rates on the phenotypic scale. At fixed levels of milk urea nitrogen, greater values of protein percentage, indicating a surplus of energy in the feed, were positively associated with nonreturn rates. Heritabilities were 0.03 for 56- and 90-d nonreturn rates, 0.07 for interval from calving to first service, 0.13 for milk urea nitrogen, and 0.19 for milk yield. Service sire explained a negligible part (below 0.15%) of the total variance for nonreturn rates. Genetic correlations between the interval from calving to first service and nonreturn rates were close to zero. The genetic correlation between nonreturn rates was 0.94, suggesting that a change from nonreturn after 90 d to nonreturn after 56 d in the national genetic evaluation would not result in any loss of information. The genetic correlation between milk yield and nonreturn after 56 d was −0.31, and between milk yield and calving to first service was 0.14, both indicating an antagonistic relationship between production and reproduction. The genetic correlation between milk yield and milk urea nitrogen was 0.44, reflecting an energy deficiency in early lactation. The genetic correlations between milk urea nitrogen and nonreturn rates were too weak (−0.19 for 56-d nonreturn rate, and −0.23 for 90-d nonreturn rate) to justify the use of milk urea nitrogen as an additional trait in genetic selection for fertility, as demonstrated by selection index calculations.  相似文献   

14.
Estimates of genetic correlations were .17 between first lactation milk yield and concurrent calving interval, .10 between second lactation milk yield and first calving interval, and .82 between first and second milk yields. Corresponding phenotypic correlations were .27, .16, and .58. Heritability estimates were .27 and .25 for first and second lactations and .15 for calving interval. Estimates were averages of two samples of 15 New York State herds averaging 144 AI-sired Holstein cows and 30 sires. Milk yields were 305-d, mature equivalent. Calving interval was days between first and second freshening. First milk records without a second freshening were included. Multiple-trait animal model included separate herd-year-season effects for first and second milk yields and calving interval. Numerator relationships among animals within herd, except for daughter-dam relationships, were included. The REML with the expectation-maximization algorithm was used to estimate (co)variance matrices among genetic values and environmental effects for the three traits. Results indicate a need to adjust milk records for the phenotypic effects of current and previous calving interval. The genetic association, however, between fertility and milk yield appears small. Genetic improvement of 450 kg of milk yield may result in 2 added d to first calving interval.  相似文献   

15.
Lactose is a major component of milk (typically around 5% of composition) that is not usually directly considered in national genetic improvement programs of dairy cattle. Daily test-day lactose yields and percentage data from pasture-based seasonal calving herds in Australia were analyzed to assess if lactose content can be used for predicting fitness traits and if an additional benefit is achieved by including lactose yield in selecting for milk yield traits. Data on lactose percentage collected from 2007 to 2014, from about 600 herds, were used to estimated genetic parameters for lactose percentage and lactose yield and correlations with other milk yield traits, somatic cell count (SCC), calving interval (CIV), and survival. Daily test-day data were analyzed using bivariate random regression models. In addition, multi-trait models were also performed mainly to assess the value of lactose to predict fitness traits. The heritability of lactose percentage (0.25 to 0.37) was higher than lactose yield (0.11 to 0.20) in the first parity. Genetically, the correlation of lactose percentage with protein percentage varied from 0.3 at the beginning of lactation to ?0.24 at the end of the lactation in the first parity. Similar patterns in genetic correlations were also observed in the second and third parity. At all levels (i.e., genetic, permanent environmental, and residual), the correlation between milk yield and lactose yield was close to 1. The genetic and permanent environmental correlations between lactose percentage and SCC were stronger in the second and third parity and toward the end of the lactation (?0.35 to ?0.50) when SCC levels are at their maximum. The genetic correlation between lactose percentage in the first 120 d and CIV (?0.23) was similar to correlation of CIV with protein percentage (?0.28), another component trait with the potential to predict fertility. Furthermore, the correlations of estimated breeding values of lactose percentage and estimated breeding values of traits such as survival, fertility, SCC, and angularity suggest that the value of lactose percentage as a predictor of fitness traits is weak. The results also suggest that including lactose yield as a trait into the breeding objective is of limited value due to the high positive genetic correlation between lactose yield and protein yield, the trait highly emphasized in Australia. However, recording lactose percentage as part of the routine milk recording system will enable the Australian dairy industry to respond quickly to any future changes and market signals.  相似文献   

16.
Data were first lactation production and reproduction records initiated from 1958 to 1981 in two experiment station Guernsey herds. Heritability estimates using paternal half sib groups were .24 +/- .12 for milk yield, .27 +/- .12 for fat yield, and .77 +/- .15 for fat percentage. Heritability estimates for reproductive traits ranged from .01 to .04 for number of services, service period, conception rate, and days open, but were higher for days in milk at first breeding (.12) and age at first calving (.13). Except for age at first calving, coefficients of additive genetic variation were larger for reproductive traits than for productive traits. Genetic correlations between measures of production and reproduction were moderate to large and antagonistic, except that the relationship between production and age at first calving was favorable. Breeding value estimates for milk yield and reproduction were negatively correlated for sires with above average breeding values for milk yield. Huge phenotypic variances for reproductive traits masked substantial additive genetic variation for these traits. When all things are considered it seems unwise to ignore reproductive performance in selection programs for dairy cattle.  相似文献   

17.
Age at first insemination, days from calving to first insemination, number of services, first-service nonreturn rate to 56 d, days from first service to conception, calving ease, stillbirth, gestation length, and calf size of Canadian Holstein cows were jointly analyzed in a linear multiple-trait model. Traits covered a wide spectrum of aspects related to reproductive performance of dairy cows. Other frequently used fertility characteristics, like days open or calving intervals, could easily be derived from the analyzed traits. Data included 94,250 records in parities 1 to 6 on 53,158 cows from Ontario and Quebec, born in the years 1997 to 2002. Reproductive characteristics of heifers and cows were treated as different but genetically correlated traits that gave 16 total traits in the analysis. Repeated records for later parities were modeled with permanent environmental effects. Direct and maternal genetic effects were included in linear models for traits related to calving performance. Bayesian methods with Gibbs sampling were used to estimate covariance components of the model and respective genetic parameters. Estimates of heritabilities for fertility traits were low, from 3% for nonreturn rate in heifers to 13% for age at first service. Interval traits had higher heritabilities than binary or categorical traits. Service sire, sire of calf, and artificial insemination technician were important (relative to additive genetic) sources of variation for nonreturn rate and traits related to calving performance. Fertility traits in heifers and older cows were not the same genetically (genetic correlations in general were smaller than 0.9). Genetic correlations (both direct and maternal) among traits indicated that different traits measured different aspects of reproductive performance of a dairy cow. These traits could be used jointly in a fertility index to allow for selection for better fertility of dairy cattle.  相似文献   

18.
The aim of this study was to estimate genetic parameters for fertility and production traits in the Brown Swiss population reared in the Alps (Bolzano-Bozen province, Italy). Fertility indicators were interval from parturition to first service, interval from first service to conception (iFC), and interval from parturition to conception, either expressed as days and as number of potential 21-d estrus cycles (cPF, cFC, and cPC, respectively); number of inseminations to conception; conception rate at first service; and non-return rate at 56 d post-first service. Production traits were peak milk yield, lactation milk yield, lactation length, average lactation protein percentage, and average lactation fat percentage. Data included 71,556 lactations (parities 1 to 9) from 29,582 cows reared in 1,835 herds. Animals calved from 1999 to 2007 and were progeny of 491 artificial insemination bulls. Gibbs sampling and Metropolis algorithms were implemented to obtain (co)variance components using both univariate and bivariate censored threshold and linear sire models. All of the analyses accounted for parity and year-month of calving as fixed effects, and herd, permanent environmental cow, additive genetic sire, and residual as random effects. Heritability estimates for fertility traits ranged from 0.030 (iFC) to 0.071 (cPC). Strong genetic correlations were estimated between interval from parturition to first service and cPF (0.97), and interval from parturition to conception and cPC (0.96). The estimate of heritability for cFC (0.055) was approximately double compared with iFC (0.030), suggesting that measuring the elapsed time between first service and conception in days or potential cycles is not equivalent; this was also confirmed by the genetic correlation between iFC and cFC, which was strong (0.85), but more distant from unity than the other 2 pairs of fertility traits. Genetic correlations between number of inseminations to conception, conception rate at first service, non-return rate at 56 d post-first service, cPF, cFC, and cPC ranged from 0.07 to 0.82 as absolute value. Fertility was unfavorably correlated with production; estimates ranged from −0.26 (cPC with protein percentage) to 0.76 (cPC with lactation length), confirming the genetic antagonism between reproductive efficiency and milk production. Although heritability for fertility is low, the contemporary inclusion of several reproductive traits in a merit index would help to improve performance of dairy cows.  相似文献   

19.
Variance and covariance components for milk yield, survival to second freshening, calving interval in first lactation were estimated by REML with the expectation and maximization algorithm for an animal model which included herd-year-season effects. Cows without calving interval but with milk yield were included. Each of the four data sets of 15 herds included about 3000 Holstein cows. Relationships across herds were ignored to enable inversion of the coefficient matrix of mixed model equations. Quadratics and their expectations were accumulated herd by herd. Heritability of milk yield (.32) agrees with reports by same methods. Heritabilities of survival (.11) and calving interval(.15) are slightly larger and genetic correlations smaller than results from different methods of estimation. Genetic correlation between milk yield and calving interval (.09) indicates genetic ability to produce more milk is lightly associated with decreased fertility.  相似文献   

20.
The trend to poorer fertility in dairy cattle with rising genetic merit for production over the last decade suggests that breeding goals need to be broadened to include fertility. This requires reliable estimates of genetic (co)variances for fertility and other traits of economic importance. In the United Kingdom at present, reliable information on calving dates and hence calving intervals are available for most dairy cows. Data in this study consisted of 44,672 records from first lactation heifers on condition score, linear type score, and management traits in addition to 19,042 calving interval records. Animal model REML was used to estimate (co)variance components. Genetic correlations of body condition score (BCS) and angularity with calving interval were -0.40 and 0.47, respectively, thus cows that are thinner and more angular have longer calving intervals. Genetic correlations between calving interval and milk, fat, and protein yields were between 0.56 and 0.61. Records of phenotypic calving interval were regressed on sire breeding values for BCS estimated from records taken at different months of lactation and breeding values for BCS change. Genetic correlations inferred from these regressions showed that BCS recorded 1 mo after calving had the largest genetic correlation with calving interval in first lactation cows. It may be possible to combine information on calving interval, BCS, and angularity into an index to predict genetic merit for fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号