首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Psychrotolerant spore-forming bacteria represent a major challenge regarding microbial spoilage of fluid milk. These organisms can survive most conventional pasteurization regimens and subsequently germinate and grow to spoilage levels during refrigerated storage. To improve predictions of fluid milk shelf life and assess different approaches to control psychrotolerant spore-forming bacteria in the fluid milk production and processing continuum, we developed a predictive model of spoilage of fluid milk due to germination and growth of psychrotolerant spore-forming bacteria. We characterized 14 psychrotolerant spore-formers, representing the most common Bacillales subtypes isolated from raw and pasteurized milk, for ability to germinate from spores and grow in skim milk broth at 6°C. Complete growth curves were obtained by determining total bacterial count and spore count every 24 h for 30 d. Based on growth curves at 6°C, probability distributions of initial spore counts in bulk tank raw milk, and subtype frequency in bulk tank raw milk, a Monte Carlo simulation model was created to predict spoilage patterns in high temperature, short time-pasteurized fluid milk. Monte Carlo simulations predicted that 66% of half-gallons (1,900 mL) of high temperature, short time fluid milk would reach a cell density greater than 20,000 cfu/mL after 21 d of storage at 6°C, consistent with current spoilage patterns observed in commercial products. Our model also predicted that an intervention that reduces initial spore loads by 2.2 Log10 most probable number/mL (e.g., microfiltration) can extend fluid milk shelf life by 4 d (end of shelf life was defined here as the first day when the mean total bacterial count exceeded 20,000 cfu/mL). This study not only provides a baseline understanding of the growth rates of psychrotolerant spore-formers in fluid milk, it also provides a stochastic model of spoilage by these organisms over the shelf life of fluid milk, which will ultimately allow for the assessment of different approaches to reduce fluid milk spoilage.  相似文献   

2.
The ability of certain spore-forming bacteria in the order Bacillales (e.g., Bacillus spp., Paenibacillus spp.) to survive pasteurization in spore form and grow at refrigeration temperatures results in product spoilage and limits the shelf life of high temperature, short time (HTST)-pasteurized fluid milk. To facilitate development of strategies to minimize contamination of raw milk with psychrotolerant Bacillales spores, we conducted a longitudinal study of 10 New York State dairy farms, which included yearlong monthly assessments of the frequency and levels of bulk tank raw milk psychrotolerant spore contamination, along with administration of questionnaires to identify farm management practices associated with psychrotolerant spore presence over time. Milk samples were first spore pasteurized (80°C for 12 min) and then analyzed for sporeformer counts on the initial day of spore pasteurization (SP), and after refrigerated storage (6°C) for 7, 14, and 21 d after SP. Overall, 41% of samples showed sporeformer counts of >20,000 cfu/mL at d 21, with Bacillus and Paenibacillus spp. being predominant causes of high sporeformer counts. Statistical analyses identified 3 management factors (more frequent cleaning of the bulk tank area, the use of a skid steer to scrape the housing area, and segregating problem cows during milking) that were all associated with lower probabilities of d-21 Bacillales spore detection in SP-treated bulk tank raw milk. Our data emphasize that appropriate on-farm measures to improve overall cleanliness and cow hygiene will reduce the probability of psychrotolerant Bacillales spore contamination of bulk tank raw milk, allowing for consistent production of raw milk with reduced psychrotolerant spore counts, which will facilitate production of HTST-pasteurized milk with extended refrigerated shelf life.  相似文献   

3.
Once pasteurized donor milk is thawed for its administration to a preterm or sick neonate, and until it is administered, it is kept refrigerated at 4 to 6°C for 24 h. After this time, unconsumed milk is discarded. This time has not been extended, primarily because of the concern of bacterial contamination. The aim of this study was to determine the changes in pH and bacterial count when pasteurized donor milk was kept under refrigeration for a prolonged period (14 d). In this prospective study, 30 samples of pasteurized donor milk from 18 donors were analyzed. Milk was handled following the regular operating protocols established in the neonatal unit and was kept refrigerated after thawing. pH measurements and bacteriology (on blood agar and MacConkey agar plates) were performed on each sample at time 0 (immediately after thawing) and then every day for 14 d. Changes in pH of samples over time were evaluated with linear mixed-effects regression models. A slow but gradual increase in milk pH was observed starting from the first day [mean (±SD) pH of 7.30 (±0.18) at time 0 and 7.69 (±0.2) on d 14]. No bacterial growth was observed in any of the samples throughout the complete trial except in one sample, in which Bacillus flexus was isolated. In conclusion, pasteurized human donor milk maintains its microbiological quality when properly handled and refrigerated (4–6°C). The slight and continuous increase in milk pH after the first day could be due to changes in the solubility of calcium and phosphate during refrigerated storage.  相似文献   

4.
The objective of this study was to measure the effect of different milk cooling rates, before entering the bulk tank, on the microbiological load and composition of the milk, as well as on energy usage. Three milk precooling treatments were applied before milk entered 3 identical bulk milk tanks: no plate cooler (NP), single-stage plate cooler (SP), and double-stage plate cooler (DP). These precooling treatments cooled the milk to 32.0 ± 1.4°C, 17.0 ± 2.8°C, and 6.0 ± 1.1°C, respectively. Milk was added to the bulk tank twice daily for 72 h, and the tank refrigeration temperature was set at 3°C. The blend temperature within each bulk tank was reduced after each milking event as the volume of milk at 3°C increased simultaneously. The bacterial counts of the milk volumes precooled at different rates did not differ significantly at 0 h of storage or at 24-h intervals thereafter. After 72 h of storage, the total bacterial count of the NP milk was 3.90 ± 0.09 log10 cfu/mL, whereas that of the precooled milk volumes were 3.77 ± 0.09 (SP) and 3.71 ± 0.09 (DP) log10 cfu/mL. The constant storage temperature (3°C) over 72 h helped to reduce bacterial growth rates in milk; consequently, milk composition was not affected and minimal, if any, proteolysis occurred. The DP treatment had the highest energy consumption (17.6 ± 0.5 Wh/L), followed by the NP (16.8 ± 2.7 Wh/L) and SP (10.6 ± 1.3 Wh/L) treatments. This study suggests that bacterial count and composition of milk are minimally affected when milk is stored at 3°C for 72 h, regardless of whether the milk is precooled; however, milk entering the tank should have good initial microbiological quality. Considering the numerical differences between bacterial counts, however, the use of the SP or DP precooling systems is recommended to maintain low levels of bacterial counts and reduce energy consumption.  相似文献   

5.
This study was designed to analyze the effects of the storage and preservation conditions on counts of mesophilic, thermoduric, psychotrophic, coliform, Escherichia coli, Streptococcus agalactiae, and Staphylococcus aureus organisms in silo ovine milk. A total of 910 analytical determinations were conducted from aliquots of 10 silo ovine milks. The conditions tested were unpreserved and azidiol-preserved milk stored at 4°C, and unpreserved milk stored at −20°C. Milk aged 2, 24, 48, 72, and 96 h post-collection for refrigerated aliquots, and 7, 15, and 30 d post-collection for frozen aliquots. The factors silo and storage conditions significantly contributed to variation of all microbiological variables, although milk age effect within storage was only significant for mesophilic, psychrotrophic, and coliform bacteria counts. In refrigerated raw milk, mesophile, psychrotroph, and coliform counts significantly increased over 96 h post-collection, whereas the other groups and bacteria species tested maintained their initial concentration. In all cases, azidiol preservation maintained the initial bacterial concentration in raw sheep milk under refrigeration throughout 96 h. Thus, azidiol was a suitable preservative for microbiological studies in sheep milk. Smallest counts were registered for frozen samples, particularly for coliforms, E. coli, Strep. agalactiae and Staph. aureus. Estimates of mesophilic, thermoduric and psychrotrophic organisms showed similar values on both azidiol-preserved and frozen milk samples. Coliforms and E. coli counts significantly decrease over time after freezing. Consequently, freezing at −20°C could also be appropriate for analysis of mesophilic, thermoduric, and psychrotrophic bacterial groups, but not for coliforms or mammary pathogens.  相似文献   

6.
Research on the storage stability of antibiotic residues in milk is important for method development or validation, milk quality control and risk assessment during screening, confirmation, qualitative or quantitative analysis. This study was conducted using UPLC-MS/MS to determine the stability of six quinolones – ciprofloxacin (CIP), danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin (SAR), difloxacin (DIF) and flumequine (FLU) – in raw milk stored under various conditions to investigate if quinolones degrade during storage of milk, and finally to determine optimal storage conditions for analysis and scientific risk assessment of quinolone residues in raw milk. The storage conditions included different temperatures and durations (4°C for 4, 8, 24 and 48 h; –20°C for 1, 7 and 30 days; –80°C for 1, 7 and 30 days), thawing temperatures (25, 40 and 60°C), freeze–thaw cycles (1–5), and the addition of different preservatives (sodium thiocyanate, sodium azide, potassium dichromate, bronopol and methanal). Most quinolones exhibited high stability at 4°C for up to 24 h, but began to degrade after 48 h. In addition, no degradation of quinolones was seen when milk samples were stored at –20°C for up to 7 days; however, 30 days of storage at –20°C resulted in a small amount of degradation (about 30%). Similar results were seen when samples were stored at –80°C. Moreover, no losses were observed when frozen milk samples were thawed at 25, 40 or 60°C. All the quinolones of interest, except sarafloxacin, were stable when milk samples were thawed at 40°C once and three times, but unstable after five freeze–thaw cycles. Preservatives affected the stability of quinolones, but the effects differed depending on the preservative and quinolone. The results of this study indicate optimum storage protocols for milk samples, so that residue levels reflect those at the time of initial sample analysis, and should improve surveillance programmes for quinolones in raw milk.  相似文献   

7.
Changes in the microbial flora of ovine milk of medium hygienic quality (initial mean total plate count 3.3  ×  105 cfu/mL) were studied throughout refrigerated storage at 6°C. Total plate counts after 48 h of refrigerated storage (mean count 4.6  ×  105 cfu/mL) were under the current standards in the European Union (EU) for raw ovine milk to be used for cheesemaking after heat treatment. However, after 96 h, mean total plate counts (1.6  ×  107 cfu/mL) were above the standards. Lactococci were found at levels higher than Pseudomonas spp. in milk freshly drawn (54.5% and 3.5% of total plate count, respectively) and after 96 h at 6°C (47.9% and 33.9% of total plate count, respectively). Lactobacilli, enterococci, coliforms and thermodurics were found at values lower than lactococci and Pseudomonas spp., before and after refrigerated storage ( ≤  0.08% of the total plate count). A significant growth ( P  < 0.001) was detected for mesophiles, Pseudomonas spp. and lactococci after 96 h of refrigeration at 6°C; however, thermodurics, coliforms, lactobacilli and enterococci, showed no significant increase ( P  > 0.05). Presumptive Escherichia coli (β-glucuronidase-positive) underwent a decrease throughout storage at 6°C.  相似文献   

8.
The effects of holding raw milk under carbon dioxide pressures of 68 to 689 kPa at temperatures of 5, 6.1, 10, and 20°C on the indigenous microbiota were investigated. These pressure-temperature combinations did not cause precipitation of proteins from the milk. Standard plate counts from treated milks demonstrated significantly lower growth rate compared with untreated controls at all temperatures, and in some cases, the treatment was microcidal. Raw milk treated with CO2 and held at 6.1°C for 4 d exhibited reduced bacterial growth rates at pressures of 68, 172, 344, and 516 kPa; and at 689 kPa, demonstrated a significant loss of viability in standard plate count assays. The 689-kPa treatment also reduced gram-negative bacteria and total Lactobacillus spp. The time required for raw milk treated at 689 kPa and held at 4°C to reach 4.30 log10 cfu/mL increased by 4 d compared with untreated controls. Total coliform counts in the treated milk were maintained at 1.95 log10 cfu/mL by d 9 of treatment, whereas counts in the control significantly increased to 2.61 log10 cfu/mL by d 4 and 2.89 log10 cfu/mL by d 9. At d 8, Escherichia coli counts had not significantly changed in treated milk, but significantly increased in the control milk. Thermoduric bacteria counts after 8 d were 1.32 log10 cfu/mL in treated milk and 1.98 log10 cfu/mL in control milk. These data indicated that holding raw milk at low CO2 pressure reduces bacterial growth rates without causing milk protein precipitation. Combining low CO2 pressure and refrigeration would improve the microbiological quality and safety of raw milk and may be an effective strategy for shipping raw single strength or concentrated milk over long distances.  相似文献   

9.
The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72°C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60°C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2°C) and then held at 6°C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9°C were lower than in milk processed at 85.2°C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can exceed Pasteurized Milk Ordinance limits in pasteurized, refrigerated milk.  相似文献   

10.
The impact of freezing (1 month + thawing at 7 or 25 °C) and extended refrigeration (4 days, 7 °C) on physicochemical and microstructural characteristics of raw whole and skimmed sheep milk were assessed. Refrigerated storage resulted in higher sedimentation and creaming (whole milk), possibly due to proteases and agglutinins. Freezing/thawing processes in whole milk increased the particle size and creaming when samples were thawed at 7 °C. Skimmed milk showed an increase in buffering capacity and a reduction in soluble calcium immediately after thawing at 25 °C, suggesting that although the changes in fat are the main alterations caused by slow freezing of sheep milk, minor changes in saline balance can occur. An evaluation of the results showed that frozen and thawed milk in domestic equipment (commonly found in smallholdings) alter the milk microstructure, and it is therefore preferable to use extended refrigeration to accumulate the milk before dairy production.  相似文献   

11.
《Journal of dairy science》2023,106(6):3838-3855
In the absence of postpasteurization contamination, psychrotolerant, aerobic spore-forming bacteria that survive high-temperature, short-time (HTST) pasteurization, limit the ability to achieve HTST extended shelf-life milk. Therefore, the goal of the current study was to evaluate bacterial outgrowth in milk pasteurized at different temperatures (75, 85, or 90°C, each for 20 s) and subsequently stored at 3, 6.5, or 10°C. An initial ANOVA of bacterial concentrations over 14 d of storage revealed a highly significant effect of storage temperatures, but no significant effect of HTST. At d 14, average bacterial counts for milk stored at 3, 6.5, and 10°C were 1.82, 3.55, and 6.86 log10 cfu/mL, respectively. Time to reach 1,000,000 cfu/mL (a bacterial concentration where consumers begin to notice microbially induced sensory defects in fluid milk) was estimated to be 68, 27, and 10 d for milk stored at 3, 6.5, and 10°C, respectively. Out of 95 isolates characterized with rpoB allelic typing, 6 unique genera, 15 unique species, and 44 unique rpoB allelic types were represented. The most common genera identified were Paenibacillus, Bacillus, and Lysinibacillus. Nonmetric multidimensional scaling identified that Bacillus was significantly associated with 3 and 10°C, whereas Paenibacillus was consistently found across all storage temperatures. Overall, our data show that storage temperature has a substantially larger effect on fluid milk shelf life than HTST and suggests that abuse temperatures (e.g., storage at 10°C) allow for growth of Bacillus species (including Bacillus cereus genomospecies) that do not grow at lower temperatures. This indicates that stringent control of storage and distribution temperatures is critical for producing extended shelf-life HTST milk, particularly concerning new distribution pathways for HTST pasteurized milk (e.g., electronic commerce), and when enhanced control of spores in raw milk is not feasible.  相似文献   

12.
Microbial spoilage of pasteurized fluid milk is typically due to either (1) postpasteurization contamination (PPC) with psychrotolerant gram-negative bacteria (predominantly Pseudomonas) or (2) growth of psychrotolerant sporeformers (e.g., Paenibacillus) that have the ability to survive pasteurization when present as spores in raw milk, and to subsequently grow at refrigeration temperatures. While fluid milk quality has improved over the last several decades, continued reduction of PPC is hampered by the lack of rapid, sensitive, and specific methods that allow for detection of PPC in fluid milk, with fluid milk processors still often using time-consuming methods (e.g., Moseley keeping quality test). The goal of this project was to utilize a set of commercial fluid milk samples that are characterized by a mixture of samples with PPC due to psychrotolerant gram-negative bacteria and samples with presence and growth of psychrotolerant sporeforming bacteria to evaluate different approaches for rapid detection of PPC. Comprehensive microbiological shelf-life characterization of 105 pasteurized fluid milk samples obtained from 20 dairy processing plants showed that 60/105 samples reached bacterial counts >20,000 cfu/mL over the shelf-life due to PPC with gram-negative bacteria. Among these 60 samples with evidence of gram-negative PPC spoilage over the shelf-life, 100% (60/60) showed evidence of contamination with noncoliform, non-Enterobacteriaceae (EB) gram-negative bacteria (e.g., Pseudomonas), 20% (12/60) showed evidence of contamination with coliforms, and 7% (4/60) showed evidence of contamination with noncoliform EB. Among the remaining 45 samples, 28 showed levels of gram-positive bacteria above 20,000 cfu/mL and the remaining 17 samples did not exceed 20,000 cfu/mL over the shelf-life. Evaluation of the same set of 105 samples using 6 different approaches {all possible combinations of 2 different enrichment protocols (13°C or 21°C for 18 h) and 3 different plating media [crystal violet tetrazolium agar, EB Petrifilm (3M, St. Paul, MN), and Coliform Petrifilm]} showed that enrichment at 21°C for 18 h, followed by plating on crystal violet tetrazolium agar provided for the most sensitive, accelerated detection of samples that reached >20,000 cfu/mL due to PPC with psychrotolerant gram-negatives (70% sensitivity). These results show that tests still required and traditionally used in the dairy industry (e.g., coliform testing) are not suitable for monitoring for PPC. Rather, approaches that allow for detection of all gram-negative bacteria are essential for improved detection of PPC in fluid milk.  相似文献   

13.
The objectives of this study were to identify control points for bacterial contamination of bovine colostrum during the harvesting and feeding processes, and to describe the effects of refrigeration and use of potassium sorbate preservative on bacteria counts in stored fresh colostrum. For objective 1, first-milking colostrum samples were collected aseptically directly from the mammary glands of 39 cows, from the milking bucket, and from the esophageal feeder tube. For objective 2, 15-mL aliquots of colostrum were collected from the milking bucket and allocated to 1 of 4 treatment groups: 1) refrigeration, 2) ambient temperature, 3) refrigeration with potassium sorbate preservative, and 4) ambient temperature with potassium sorbate preservative. Subsamples from each treatment group were collected after 24, 48, and 96 h of storage. All samples underwent bacteriological culture for total plate count and coliform count. Bacteria counts were generally low or zero in colostrum collected directly from the gland [mean (SD) log10 cfu/mLudder = 1.44 (1.45)]. However, significant bacterial contamination occurred during the harvest process [mean (SD) log10 cfu/mLbucket = 4.99 (1.95)]. No additional bacterial contamination occurred between the bucket and the esophageal feeder tube. Storing colostrum at warm ambient temperatures resulted in the most rapid increase in bacteria counts, followed by intermediate rates of growth in nonpre-served refrigerated samples or preserved samples stored at ambient temperature. The most effective treatment studied was the use of potassium sorbate preservative in refrigerated samples, for which total plate count and total coliform counts dropped significantly and then remained constant during the 96-h storage period.  相似文献   

14.
Bacterial numbers over refrigerated shelf-life were enumerated in high-temperature, short-time (HTST) commercially pasteurized fluid milk for 15 mo before and 15 mo after reducing pasteurization temperature from 79.4°C (175°F) [corrected] to 76.1°C (169°F). Total bacterial counts were measured in whole fat, 2% fat, and fat-free milk products on the day of processing as well as throughout refrigerated storage (6°C) at 7, 14, and 21 d postprocessing. Mean total bacterial counts were significantly lower immediately after processing as well as at 21 d postprocessing in samples pasteurized at 76.1°C versus samples pasteurized at 79.4°C. In addition to mean total bacterial counts, changes in bacterial numbers over time (i.e., bacterial growth) were analyzed and were lower during refrigerated storage of products pasteurized at the lower temperature. Lowering the pasteurization temperature for unflavored fluid milk processed in a commercial processing facility significantly reduced bacterial growth during refrigerated storage.  相似文献   

15.
Psychrotrophic bacteria were isolated from refrigerated raw milk from a processing plant in Southern Brazil. Psychrotrophic counts were between 4.9 and 7.8 log cfu/mL, and 5.3 to 7.2 log cfu/mL, for samples collected at the truck and the milk storage silo, respectively. Among the bacterial isolates, 90% were Gram-negative. Most strains presented low proteolytic activity, but strains of Burkholderia cepacia, Klebsiella oxytoca and Aeromonas sp. showed higher than 20 U/mL on azocasein as substrate. Crude proteases from selected strains were resistant to conventional heat treatments and caused coagulation of UHT milk after 5 days storage at room temperature.  相似文献   

16.
17.
When correctly pasteurized, packaged, and stored, milk with low total bacterial counts (TBC) has a longer shelf life. Therefore, microorganisms that resist heat treatments are especially important in the deterioration of pasteurized milk and in its shelf life. The aim of this work was to quantify the thermoduric microorganisms after the pasteurization of refrigerated raw milk samples with low TBC and to identify the diversity of these isolates with proteolytic or lipolytic potential by RFLP analysis. Twenty samples of raw milk were collected in bulk milk tanks shortly after milking in different Brazilian dairy farms and pasteurized. The mean thermoduric count was 3.2 (±4.7) × 102 cfu/mL (2.1% of the TBC). Of the 310 colonies obtained, 44.2% showed milk spoilage potential, 32.6% were proteolytic and lipolytic simultaneously, 31% were exclusively proteolytic, and 48 (36.4%) were only lipolytic. Regarding the diversity, 8 genera were observed (Bacillus, Brachybacterium, Enterococcus, Streptococcus, Micrococcus, Kocuria, Paenibacillus, and Macrococcus); there was a predominance of endospore-forming bacteria (50%), and Bacillus licheniformis was the most common (34.1%) species. Considering the RFLP types, it was observed that the possible clonal populations make up the microbiota of different milk samples, but the same milk samples contain microorganisms of a single species with different RFLP types. Thus, even in milk with a high microbiological quality, it is necessary to control the potential milk-deteriorating thermoduric microorganisms to avoid the risk of compromising the shelf life and technological potential of pasteurized milk.  相似文献   

18.
Whole milk powder (WMP) is a universal raw material component that can overcome the problem of seasonality of raw milk. It can be used to provide high-nutritional products to remote areas experiencing a raw milk shortage. Its long shelf life depends on the conditions of storage and transportation, which are recommended to be carried out in a range from 0 to 10°C. At higher temperatures, the quality of WMP deteriorates because of a substantial increase in the degradation of fat and protein fractions. A range of low negative temperatures for storage have not been systematically investigated. Previous studies have shown that freezing WMP results in protein denaturation, crystallization of lactose, and extraction of free fat, all of which reduce the quality characteristics of the product, including deterioration of solubility, quick rancidification, and microbiological changes. However, these previous studies did not simulate the possible situations of transportation and storage of milk powder at low negative temperatures that occur in practice. Given the volume of transportation, distances and climatic characteristics of transportation routes play an important role in WMP preservation. In this study, we simulated storage and transport of WMP at ?20°C. The samples were periodically thawed to 10 and 20°C and examined for physicochemical, functional-technological, thermodynamic, microbiological, and organoleptic parameters. Based on our results, storage of WMP at ?20°C for 40 d did not have a significant effect on its qualitative characteristics. We observed some compaction of product structure and clustering or clumping, which was reversible by slight mechanical impact. Artificial contamination of the packaging surface with yeast and molds, followed by thawing of the samples, indicated the absence of the contaminants, which was explained by possible redistribution of moisture in the system.  相似文献   

19.
《Journal of dairy science》2019,102(9):7794-7799
Bactofugation is a centrifugal process for removing spores of microorganisms from milk, especially when it is destined for cheese making. Other microorganisms may be removed in bactofugation. This study aimed to verify the effect of milk bactofugation on the counts and microbial diversity of psychrotrophs. The raw milk was preheated (≈55°C) before being bactofuged, and samples were collected from 3 batches of milk: refrigerated raw, preheated, and bactofuged, representing the immediate conditions before and after bactofugation. The mean psychrotrophic counts of the 3 batches were 3.08 (±1.69) × 106, 193 (±232), and 20 (±26) cfu/mL, respectively. Preheating was sufficient to eliminate 99.99% of the raw milk psychrotrophs, but bactofugation further reduced 89.66% of psychrotrophs from preheated milk. Lysinibacillus fusiformis was the most frequently isolated species (45.7%) among the psychrotrophs of raw milk and, proportionally, were more frequent in preheated (37.5%) and bactofuged (60%) milk. Bacillus invictae (20%), Enterococcus faecalis (10%), and Kurthia gibsonii (10%) were also isolated from bactofuged milk. Albeit in small numbers, psychrotrophic, thermoduric, and spore-forming bacteria with known proteolytic and lipolytic activity remained in the milk after bactofugation, which apparently had no effect on a specific population of microorganisms but proportionally reduced the entire psychrotrophic microbiota of raw milk.  相似文献   

20.
Some strains of sporeforming bacteria (e.g., Bacillus spp. and Paenibacillus spp.) can survive pasteurization and subsequently grow at refrigeration temperatures, causing pasteurized fluid milk spoilage. To identify farm management practices associated with different levels of sporeformers in raw milk, a bulk tank sample was obtained from and a management and herd health questionnaire was administered to 99 New York State dairy farms. Milk samples were spore pasteurized [80°C (176°F) for 12 min] and subsequently analyzed for most-probable number and for sporeformer counts on the initial day of spore pasteurization (SP), and after refrigerated storage (6°C) at 7, 14, and 21 d after SP. Management practices were analyzed for association with sporeformer counts and bulk tank somatic cell counts. Sixty-two farms had high sporeformer growth (≥3 log cfu/mL at any day after SP), with an average sporeformer count of 5.20 ± 1.41 mean log10 cfu/mL at 21 d after SP. Thirty-seven farms had low sporeformer numbers (<3 log cfu/mL for all days after SP), with an average sporeformer count of 0.75 ± 0.94 mean log10 cfu/mL at 21 d after SP. Farms with >25% of cows with dirty udders in the milking parlor were 3.15 times more likely to be in the high category than farms with ≤10% of milking cows with dirty udders. Farms with <200 cows were 3.61 times more likely to be in the high category than farms with ≥200 cows. Management practices significantly associated with increased bulk tank somatic cell count were a lack of use of the California mastitis test at freshening and >25% of cows with dirty udders observed in the milking parlor. Changes in management practices associated with cow cleanliness may directly ensure longer shelf life and higher quality of pasteurized fluid milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号