首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Two mesophilic anaerobic chemostats, one without added Ni2+ and Co2+ (chemostat 1) and the other with added Ni2+ and Co2+ (chemostat 2), were supplied with synthetic wastewater containing bovine serum albumin (BSA) as the sole carbon and energy source in order to study the capacity of protein degradation, microbial community structure and the effects of the addition of trace metals. Volatile fatty acids and ammonia were the main products of chemostat 1, while methane, CO2 and ammonia were the main products of chemostat 2, and critical dilution rates of 0.15 d-1 and 0.08 d-1 were obtained, respectively. Fluorescence in situ hybridization (FISH) with archaeal and bacterial domain-specific probes showed that archaeal cells were very limited in chemostat 1 while large populations of several types of archaeal cells were present in chemostat 2. Phylogenetic analyses based on 16S rRNA gene clonal sequences, DGGE, and quantitative real-time polymerase chain reaction (PCR) showed that, within the domain Archaea, methanogens affiliated with the genera Methanosaeta and Methanoculleus were predominant in chemostat 2. Within the domain Bacteria, rRNA genes obtained from chemostat 1 were affiliated with the three phyla; Firmicutes (43%), Bacteroidetes (50%) and Proteobacteria (7%). A total of 56% of rRNA genes obtained from chemostat 2 was affiliated with the three phyla, Firmicutes (32%), Bacteroidetes (11%) and Proteobacteria (13%) while 44% of rRNA genes remained unclassified. Phylogenetically distinct clones were obtained in these two chemostats, suggesting that different protein degradation pathways were dominant in the two chemostats: coupled degradation of amino acids via the Stickland reaction in chemostat 1 and uncoupled degradation of amino acids via syntrophic association of amino acid degraders and hydrogenotrophic methanogens in chemostat 2.  相似文献   

2.
We established a chemostat cultivation method for a mesophilic methanogenic consortium that could degrade long-chain fatty acids (LCFA) using a completely stirred tank reactor (CSTR) fed with synthetic wastewater containing oleic and palmitic acids as the carbon and energy sources. The critical dilution rate of the chemostat, in which most of the introduced LCFA were decomposed and mineralized, was 0.4 d(-1). The microbial community under steady-state condition at this dilution rate was analyzed by 16S rRNA gene sequencing. We detected the following major groups of methanogens within the archaeal community: the aceticlastic genera Methanosaeta and Methanosarcina and the hydrogenotrophic genus Methanospirillum. We also detected organisms that were closely related to fatty-acid oxidizing bacteria affiliated with the family Syntrophomonadaceae. However, bacteria belonging to the phyla Bacteroidetes and Spirochaetes, which are phylogenetically distant from known fatty-acid oxidizing bacteria, apparently predominated in the population, indicating that they play important roles in LCFA degradation within the chemostat.  相似文献   

3.
Distillery wastewater from awamori making was anaerobically treated for one year using thermophilic upflow anaerobic filter (UAF) reactors packed with pyridinium group-containing nonwoven fabric material. The microbial structure and spatial distribution of microorganisms on the support material were characterized using molecular biological methods. The reactor steadily achieved a high TOC loading rate of 18 g/l/d with approximately 80% TOC removal efficiency when non-diluted wastewater was fed. The maximum TOC loading rate increased to 36 g/l/d when treating thrice-diluted wastewater. However, the TOC removal efficiency and gas evolution rate decreased compared with that when non-diluted wastewater was used. Methanogens closely related to Methanosarcina thermophila and Methanoculleus bourgensis and bacteria in the phyla Firmicutes and Bacteroidetes were predominant methanogens and bacteria in the thermophilic UFA reactor, as indicated by 16S rRNA gene clone analysis. Fluorescence in situ hybridization (FISH) results showed that a large quantity of bacterial cells adhered throughout the whole support, and Methanosarcina-like methanogens existed mainly in the relative outside region while Methanoculleus cells were located in the relative inner part of the support. The support material used proved to be an excellent carrier for microorganisms, and a UAF reactor using this kind of support can be used for high-rate treatment of awamori/shochu distillery wastewater.  相似文献   

4.
The diversity of microbial communities associated with non-water-flooded high-temperature reservoir of the Niibori oilfield was characterized. Analysis of saturated hydrocarbons revealed that n-alkanes in crude oil from the reservoir were selectively depleted, suggesting that crude oil might be mildly biodegraded in the reservoir. To examine if any specific microorganism(s) preferentially attached to the crude oil or the other components (large insoluble particles and formation water) of the reservoir fluid, 16S rRNA gene clone libraries were constructed from each component of the reservoir fluid. The clones in the archaeal libraries (414 clones in total) represented 16 phylotypes, many of which were closely related to methanogens. The bacterial libraries (700 clones in total) were composed of 49 phylotypes belonging to one of 16 phylum-level groupings, with Firmicutes containing the greatest diversity of the phylotypes. In the crude-oil- and large-insoluble-particle-associated communities, a Methanosaeta-related phylotype dominated the archaeal sequences, whereas hydrogenotrophic methanogens occupied a major portion of sequences in the library of the formation-water-associated community. The crude-oil associated bacterial community showed the largest diversity, containing 35 phylotypes, 16 of which were not detected in the other bacterial communities. Thus, although the populations associated with the reservoir-fluid components largely shared common phylogenetic context, a specific fraction of microbial species preferentially attached to the crude oil and insoluble particles.  相似文献   

5.
Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.  相似文献   

6.
A full-scale biosystem consisting of two anaerobic reactors (HA and BF1) and four aerobic ones (BF2-BF4 and OD) in succession and receiving antibiotic-bearing (mainly streptomycin) wastewater was used for studying the impacts of antibiotics on microbial community structures. Significant decreases of streptomycin (from 3955 ± 1910 to 23.1 ± 4.7 μg L(-1)) and COD(Cr) were observed along the treatment process. Cloning results show that the anaerobic reactors (HA and BF1) were dominated with Deltaproteobacteria (51%) mainly affiliated with sulfate-reducing bacteria (SRB), while the aerobic BF2 receiving streptomycin of 408.6 ± 59.7 μg L(-1) was dominated with Betaproteobacteria (34%), Deltaproteobacteria (31%) and Bacteroidetes (14%). Gammaproteobacteria (15.9-22.4%), Betaproteobacteria (10.0-20.3%), and Bacteroidetes (4.5-29.7%) became the major bacterial groups in aerobic BF3-OD receiving streptomycin of ≤83 ± 13 μg L(-1). Archaea affiliated with Methanomethylovorans hollandica-like methylotroph was abundant in HA and BF1 (archaea/bacteria, 0.54-0.40; based on specific gene copy number), suggesting the coexistence of SRB and methanogens in degrading pollutants. Fungi were abundant (fungi/bacteria, 0.15; based on specific gene copy number) with the dominance of Ascomycota (clone ratio of Ascomycota/eukarya, 25.5%) in BF2, suggesting that fungi could be an important player in pollutant removal under high levels of antibiotics. This study demonstrates that under high antibiotic levels, wastewater treatment communities may maintain system stability through adjusting bacterial, archaeal, and eukaryal compositions.  相似文献   

7.
作为我国传统的发酵食品,腊鱼因具有独特的滋味和口感而深受人们青睐。以16 s rDNA基因为标靶,采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)与Mi Seq高通量测序技术相结合的方法对采集自恩施地区腊鱼样品的细菌多样性进行了研究。PCR-DGGE结果表明,腊鱼样品中的细菌以Psychrobacter和Lactobacillus为主。Mi Seq高通量测序结果表明,腊鱼中的优势细菌门主要为变形菌门(Proteobacteria)、硬壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria),其平均相对含量分别为61.29%、30.21%、5.34%和1.74%。腊鱼中的优势细菌主要为Psychrobacter、Brochothrix、Pseudomonas、Staphylococcus、Acinetobacter、Vibrio、Pseudoalteromonas和Chryseobacterium,其平均相对含量为35.70%、19.74%、7.13%、7.12%、4.19%、3.90%、3.09%和1.98%。在分类操作单元(Operational taxonomic units,OTU)水平上,发现了64个核心OTU,累计平均相对含量高达62.67%。由此可见,恩施地区腊鱼中的优势细菌主要由隶属于Proteobacteria的Psychrobacter及隶属于Firmicutes的Brochothrix构成,且不同样品共有大量的核心细菌菌群。  相似文献   

8.
土壤中降解烟碱细菌多样性研究   总被引:2,自引:0,他引:2  
为了解烟草根围土壤中可降解烟碱细菌的多样性,采用0.1%的烟碱为唯一碳源和氮源的无机盐培养基,从云南省普洱、玉溪、曲靖、楚雄、大理五个地区59个土样中分离得到302株降解烟碱细菌;16S rDNA序列分析结果表明,302株菌分属厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、变形菌 门(Proteobacteria)和拟杆菌门(Bacteroidetes)四大类群,分别与数据库中已知的节杆菌属(Arthrobacter)、芽孢杆菌属(Bacillus)、类芽孢杆菌属(Paenibacillus)、微球菌属(Micrococcus)、纤维单胞菌属(Cellulomonas)、假单胞菌属(Pseudomonas)、短状杆菌属(Brachybacterium)、根瘤菌属(Rhizobium)、中华根瘤菌属(Sinorhizobium)、土壤杆菌属(Agrobacterium)、不动杆菌属(Acinetobacter)、剑菌属(Ensifer)、两面神菌属(Janibacter)、鞘脂杆菌属(Sphingobacterium)、Balneimonas具有较高的相似性.其中节杆菌属、芽孢杆菌属和类芽孢杆菌属为土壤中降解烟碱细菌的优势菌属.  相似文献   

9.
从微生物菌群的动态变化来阐述厌氧消化过程已成为近年的研究热点之一。该文从微生物菌群变化的角度对碱预处理促进纤维质原料厌氧消化性能的原因进行了分析。通过对碱预处理组及对照组典型厌氧消化阶段进行取样、高通量测序后,比较二者在菌群结构方面的差异。结果表明,底物种类及碱处理均对厌氧消化菌群结构有显著影响。实验中共鉴定出10个门、16个属的微生物。微生物主要属于厚壁菌门、拟杆菌门、变形菌门和广古菌门。碱预处理可以显著促进厌氧消化中前期厚壁菌门微生物的增殖。从属水平看,碱处理促进了水解菌、产酸菌和产甲烷菌的增殖;对照组中的微生物更加多样化。甲烷鬃菌属在甲烷菌中占据优势,这表明在该研究条件下乙酸途径是产甲烷的主要途径。  相似文献   

10.
研究腐乳生产过程中环境微生物对其品质及风味的影响。选择自然发酵腐乳和纯种发酵腐乳,通过高通量基因测序技术鉴定腐乳中微生物的多样性和丰度,其中细菌采用16S rDNA测序,真菌采用ITS1测序。结果表明,在细菌门水平上,变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)是4?个腐乳样品的主要菌门。真菌门水平主要是子囊菌门(Ascomycota)、unclassified_k__Fungi、担子菌门(Basidiomycota)和毛霉亚门(Mucoromycota)。在细菌种水平上,草莓假单胞菌(Pseudomonas fragi)在A、B、C、D 4 种样品中相对丰度都很高,分别为2.30%、20.95%、12.51%、48.75%,且在自然发酵腐乳中的含量高于纯种发酵腐乳。真菌主要菌种是酵母菌,样品A主要包括unclassified_k__Fungi(63.20%)和粉状米勒酵母(Millerozyma farinosa)(25.80%)。在B、C、D三个样品中以Debaryomyces prosopidis为主,相对丰度分别为37.60%、51.70%、85.90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号