首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine the long-term effects of feeding monensin on methane (CH4) production in lactating dairy cows. Twenty-four lactating Holstein dairy cows (1.46 ± 0.17 parity; 620 ± 5.9 kg of live weight; 92.5 ± 2.62 d in milk) housed in a tie-stall facility were used in the study. The study was conducted as paired comparisons in a completely randomized design with repeated measurements in a color-coded, double-blind experiment. The cows were paired by parity and days in milk and allocated to 1 of 2 treatments: 1) the regular milking cow total mixed ration (TMR) with a forage-to-concentrate ratio of 60:40 (control TMR; placebo premix) vs. a medicated TMR (monensin TMR; regular TMR + 24 mg of Rumensin Premix/kg of dry matter) fed ad libitum. The animals were fed and milked twice daily (feeding at 0830 and 1300 h; milking at 0500 and 1500 h) and CH4 production was measured prior to introducing the treatments and monthly thereafter for 6 mo using an open-circuit indirect calorimetry system. Monensin reduced CH4 production by 7% (expressed as grams per day) and by 9% (expressed as grams per kilogram of body weight), which were sustained for 6 mo (mean, 458.7 vs. 428.7 ± 7.75 g/d and 0.738 vs. 0.675 ± 0.0141, control vs. monensin, respectively). Monensin reduced milk fat percentage by 9% (3.90 vs. 3.53 ± 0.098%, control vs. monensin, respectively) and reduced milk protein by 4% (3.37 vs. 3.23 ± 0.031%, control vs. monensin, respectively). Monensin did not affect the dry matter intake or milk yield of the cows. These results suggest that medicating a 60:40 forage-to-concentrate TMR with 24 mg of Rumensin Premix/kg of dry matter is a viable strategy for reducing CH4 production in lactating Holstein dairy cows.  相似文献   

2.
The primary objective of our research was to determine the effect of a high dose of monensin supplementation on enteric CH4 emissions of dairy cows offered a ryegrass pasture diet supplemented with grain. An additional objective was to evaluate effects on milk production and rumen function, because a commensurate improvement in milk production could lead to adoption of monensin as a profitable strategy for methane abatement. Two experiments were conducted (grazing and respiratory chambers) and in both experiments monensin (471 mg/d) was topdressed on 4 kg (dry matter)/d of rolled barley grain offered in a feed trough twice daily at milking times. In the grazing experiment, 50 Holstein-Friesian cows were assigned randomly to 1 of 2 groups (control or monensin). Cows grazed together as a single herd on a predominantly ryegrass sward and received monensin over a 12-wk period, during which time measurements of milk production and body weight change were made. The SF6 tracer technique was used to estimate methane production of 30 of the 50 cows (15 control cows and 15 monensin cows) for 3 consecutive days in wk 3, 5, 8, and 12 of treatment. Samples of rumen fluid were collected per fistula from 8 of the 50 cows (4 per diet) on 2 consecutive days in wk 3, 5, 8, and 12 of treatment and analyzed for volatile fatty acids and ammonia-N. In the metabolic chamber experiment, 10 pairs of lactating dairy cows (control and monensin) were used to determine the effects of monensin on methane emissions, dry matter intake, milk production, and body weight change over a 10-wk period. Methane emissions were measured by placing cows in respiration chambers for 2 d at wk 5 and 10 of treatment. Cows received fresh ryegrass pasture harvested daily. Monensin did not affect methane production in either the grazing experiment (g/d, g/kg of milk) or the chamber experiment (g/d, g/kg of dry matter intake, g/kg of milk). In both experiments, milk production did not increase with addition of monensin to the diet. Monensin had no effect on body weight changes in either experiment. Monensin did not affect volatile fatty acids or ammonia-N in rumen fluid, but the acetate to propionate ratio tended to decrease. Monensin did not improve milk production of grazing dairy cows and no effect on enteric methane emissions was observed, indicating that monensin cannot be promoted as a viable mitigation strategy for dairy cows grazing ryegrass pasture supplemented with grain.  相似文献   

3.
An experiment was undertaken to investigate the effect of white clover inclusion in grass swards (GWc) compared with grass-only (GO) swards receiving high nitrogen fertilization and subjected to frequent and tight grazing on herbage and dairy cow productivity and enteric methane (CH4) emissions. Thirty cows were allocated to graze either a GO or GWc sward (n = 15) from April 17 to October 31, 2011. Fresh herbage [16 kg of dry matter (DM)/cow] and 1 kg of concentrate/cow were offered daily. Herbage DM intake (DMI) was estimated on 3 occasions (May, July, and September) during which 17 kg of DM/cow per day was offered (and concentrate supplementation was withdrawn). In September, an additional 5 cows were added to each sward treatment (n = 20) and individual CH4 emissions were estimated using the sulfur hexafluoride (SF6) technique. Annual clover proportion (±SE) in the GWc swards was 0.20 ± 0.011. Swards had similar pregrazing herbage mass (1,800 ± 96 kg of DM/ha) and herbage production (13,110 ± 80 kg of DM/ha). The GWc swards tended to have lower DM and NDF contents but greater CP content than GO swards, but only significant differences were observed in the last part of the grazing season. Cows had similar milk and milk solids yields (19.4 ± 0.59 and 1.49 ± 0.049 kg/d, respectively) and similar milk composition. Cows also had similar DMI in the 3 measurement periods (16.0 ± 0.70 kg DM/cow per d). Similar sward and animal performance was observed during the CH4 estimation period, but GWc swards had 7.4% less NDF than GO swards. Cows had similar daily and per-unit-of-output CH4 emissions (357.1 ± 13.6 g of CH4/cow per day, 26.3 ± 1.14 g of CH4/kg of milk, and 312.3 ± 11.5 g of CH4/kg of milk solids) but cows grazing GWc swards had 11.9% lower CH4 emissions per unit of feed intake than cows grazing GO swards due to the numerically lower CH4 per cow per day and a tendency for the GWc cows to have greater DMI compared with the GO cows. As a conclusion, under the conditions of this study, sward clover content in the GWc swards was not sufficient to improve overall sward herbage production and quality, or dairy cow productivity. Although GWc cows had a tendency to consume more and emitted less CH4 per unit of feed intake than GO cows, no difference was observed in daily or per-unit-of-output CH4 emissions.  相似文献   

4.
Prediction of methane production from dairy and beef cattle   总被引:2,自引:0,他引:2  
Methane (CH4) is one of the major greenhouse gases being targeted for reduction by the Kyoto protocol. The focus of recent research in animal science has thus been to develop or improve existing CH4 prediction models to evaluate mitigation strategies to reduce overall CH4 emissions. Eighty-three beef and 89 dairy data sets were collected and used to develop statistical models of CH4 production using dietary variables. Dry matter intake (DMI), metabolizable energy intake, neutral detergent fiber, acid detergent fiber, ether extract, lignin, and forage proportion were considered in the development of models to predict CH4 emissions. Extant models relevant to the study were also evaluated. For the beef database, the equation CH4 (MJ/d) = 2.94 (± 1.16) + 0.059 (± 0.0201) × metabolizable energy intake (MJ/d) + 1.44 (± 0.331) × acid detergent fiber (kg/d) - 4.16 (± 1.93) × lignin (kg/d) resulted in the lowest root mean square prediction error (RMSPE) value (14.4%), 88% of which was random error. For the dairy database, the equation CH4 (MJ/d) = 8.56 (± 2.63) + 0.14 (± 0.056) × forage (%) resulted in the lowest RMSPE value (20.6%) and 57% of error from random sources. An equation based on DMI also performed well for the dairy database: CH4 (MJ/d) = 3.23 (± 1.12) + 0.81 (± 0.086) × DMI (kg/d), with a RMSPE of 25.6% and 91% of error from random sources. When the dairy and beef databases were combined, the equation CH4 (MJ/d) = 3.27 (± 0.79) + 0.74 (± 0.074) × DMI (kg/d) resulted in the lowest RMSPE value (28.2%) and 83% of error from random sources. Two of the 9 extant equations evaluated predicted CH4 production adequately. However, the new models based on more commonly determined values showed an improvement in predictions over extant equations.  相似文献   

5.
Twenty midlactation Holstein cows (4 ruminally fistulated) averaging 101 ± 34 d in milk and weighing 674 ± 77 kg were used to compare rations with brown midrib corn silage (bm3) to rations with dual-purpose control silage (DP) on N utilization and milk production. The effect of monensin in these rations was also examined. Animals were assigned to one of five 4 × 4 Latin squares with treatments arranged in a 2 × 2 factorial. Cows were fed 1 of 4 treatments during each of the four 28-d periods. Treatments were 1) 0 mg/d monensin and bm3 corn silage, 2) 0 mg/d monensin and DP corn silage, 3) 300 mg/d monensin and bm3 corn silage, and 4) 300 mg/d monensin and DP corn silage. In vitro 30-h neutral detergent fiber (NDF) digestibility was greater for bm3 corn silage (61.0 vs. 49.1 ± 0.62). Dry matter intake (DMI) tended to be greater for cows consuming bm3 corn silage (21.3 vs. 20.2 kg/d). Neither hybrid nor monensin affected milk production, fat, or protein (37.7 kg, 3.60%, or 3.04%). Monensin tended to increase rumen pH (5.89 vs. 5.79 ± 0.07) compared with the control treatment. In addition, bm3 corn silage resulted in a significant decrease in rumen pH (5.72 vs. 5.98 ± 0.07). Supplementing monensin had no effect on molar proportions of acetate, propionate, or butyrate. In contrast, an increase was observed in branched-chain volatile fatty acids. No treatment interactions were observed for rumen pH or molar proportion of propionate but monensin decreased the molar proportion of acetate and increased the molar proportion of butyrate when cattle consumed bm3 silage. Dry matter, N, and acid detergent fiber digestibility were lower for the bm3 ration, whereas NDF digestibility was not different between treatments. There was no effect of hybrid on microbial protein synthesis (1,140 g/d) as estimated by urinary concentration of purine derivatives. Cows consuming bm3 excreted more fecal N than cows consuming DP (38.2 vs. 34.4% N intake); however, based on spot sampling, estimated urinary and manure N were not different between treatments (35.8 and 71.9% N intake). Monensin had no effect on DMI, digestibility of any nutrients, or N metabolism, and there were no hybrid by monensin interactions. Rations including bm3 corn silage tended to increase DMI but did not affect production. The reduction in the digestibility of some nutrients when cows consumed bm3 may have been caused by increased DMI and possible increased digestion in the lower gut. This increase in DMI appeared to also have negatively affected N digestibility but not NDF digestibility. This resulted in a greater amount of N excreted in feces but did not affect total mass of manure N.  相似文献   

6.
Although the effect of nutrition on enteric methane (CH4) emissions from confined dairy cattle has been extensively examined, less information is available on factors influencing CH4 emissions from grazing dairy cattle. In the present experiment, 40 Holstein-Friesian dairy cows (12 primiparous and 28 multiparous) were used to examine the effect of concentrate feed level (2.0, 4.0, 6.0, and 8.0 kg/cow per day; fresh basis) on enteric CH4 emissions from cows grazing perennial ryegrass-based swards (10 cows per treatment). Methane emissions were measured on 4 occasions during the grazing period (one 4-d measurement period and three 5-d measurement periods) using the sulfur hexafluoride technique. Milk yield, liveweight, and milk composition for each cow was recorded daily during each CH4 measurement period, whereas daily herbage dry matter intake (DMI) was estimated for each cow from performance data, using the back-calculation approach. Total DMI, milk yield, and energy-corrected milk (ECM) yield increased with increasing concentrate feed level. Within each of the 4 measurement periods, daily CH4 production (g/d) was unaffected by concentrate level, whereas CH4/DMI decreased with increasing concentrate feed level in period 4, and CH4/ECM yield decreased with increasing concentrate feed level in periods 2 and 4. When emissions data were combined across all 4 measurement periods, concentrate feed level (2.0, 4.0, 6.0, and 8.0 kg/d; fresh basis) had no effect on daily CH4 emissions (287, 273, 272, and 277 g/d, respectively), whereas CH4/DMI (20.0, 19.3, 17.7, and 18.1 g/kg, respectively) and CH4-E/gross energy intake (0.059, 0.057, 0.053, and 0.054, respectively) decreased with increasing concentrate feed levels. A range of prediction equations for CH4 emissions were developed using liveweight, DMI, ECM yield, and energy intake, with the strongest relationship found between ECM yield and CH4/ECM yield (coefficient of determination = 0.50). These results demonstrate that offering concentrates to grazing dairy cows increased milk production per cow and decreased CH4 emissions per unit of milk produced.  相似文献   

7.
Grape marc reduces methane emissions when fed to dairy cows   总被引:1,自引:0,他引:1  
Grape marc (the skins, seeds, stalk, and stems remaining after grapes have been pressed to make wine) is currently a by-product used as a feed supplement by the dairy and beef industries. Grape marc contains condensed tannins and has high concentrations of crude fat; both these substances can reduce enteric methane (CH4) production when fed to ruminants. This experiment examined the effects of dietary supplementation with either dried, pelleted grape marc or ensiled grape marc on yield and composition of milk, enteric CH4 emissions, and ruminal microbiota in dairy cows. Thirty-two Holstein dairy cows in late lactation were offered 1 of 3 diets: a control (CON) diet; a diet containing dried, pelleted grape marc (DGM); and a diet containing ensiled grape marc (EGM). The diet offered to cows in the CON group contained 14.0 kg of alfalfa hay dry matter (DM)/d and 4.3 kg of concentrate mix DM/d. Diets offered to cows in the DGM and EGM groups contained 9.0 kg of alfalfa hay DM/d, 4.3 kg of concentrate mix DM/d, and 5.0 kg of dried or ensiled grape marc DM/d, respectively. These diets were offered individually to cows for 18 d. Individual cow feed intake and milk yield were measured daily and milk composition measured on 4 d/wk. Individual cow CH4 emissions were measured by the SF6 tracer technique on 2 d at the end of the experiment. Ruminal bacterial, archaeal, fungal, and protozoan communities were quantified on the last day of the experiment. Cows offered the CON, DGM, and EGM diets, ate 95, 98, and 96%, respectively, of the DM offered. The mean milk yield of cows fed the EGM diet was 12.8 kg/cow per day and was less than that of cows fed either the CON diet (14.6 kg/cow per day) or the DGM diet (15.4 kg/cow per day). Feeding DGM and EGM diets was associated with decreased milk fat yields, lower concentrations of saturated fatty acids, and enhanced concentrations of mono- and polyunsaturated fatty acids, in particular cis-9,trans-11 linoleic acid. The mean CH4 emissions were 470, 375, and 389 g of CH4/cow per day for cows fed the CON, DGM, and EGM diets, respectively. Methane yields were 26.1, 20.2, and 21.5 g of CH4/kg of DMI for cows fed the CON, DGM, and EGM diets, respectively. The ruminal bacterial and archaeal communities were altered by dietary supplementation with grape marc, but ruminal fungal and protozoan communities were not. Decreases of approximately 20% in CH4 emissions and CH4 yield indicate that feeding DGM and EGM could play a role in CH4 abatement.  相似文献   

8.
We examined the effects of monensin, provided by controlled-release capsules, on the enteric methane emissions and milk production of dairy cows receiving ryegrass pasture and grain. In a grazing experiment, 60 Holstein-Friesian cows were assigned randomly to 1 of 2 groups (control or monensin). Cows in the monensin group received 2 controlled-release capsules, with the second capsule administered 130 d after the first. Milk production was measured for 100 d following insertion of each capsule. The sulfur hexafluoride tracer gas technique was used to measure enteric methane emissions for 4 d starting on d 25 and 81 after insertion of the first capsule, and on d 83 after insertion of the second capsule. All cows grazed together as a single herd on a predominantly ryegrass sward and received 5 kg/d of grain (as-fed basis). In a second experiment, 7 pairs of lactating dairy cows (control and monensin) were used to determine the effects of monensin controlled-release capsules on methane emissions and dry matter intake. Methane emissions were measured on d 75 after capsule insertion by placing cows in respiration chambers for 3 d. Cows received fresh ryegrass pasture harvested daily and 5 kg/d of grain. The release rate of monensin from the capsules used in both experiments was 240 ± 0.072 mg/d, determined over a 100-d period in ruminally cannulated cows. The monensin dose was calculated to be 12 to 14.5 mg/kg of dry matter intake. There was no effect of monensin on methane production in either the grazing experiment (g/d, g/kg of milk solids) or the chamber experiment (g/d, g/kg of dry matter intake). In the grazing study, there was no effect of monensin on milk yield, but monensin increased milk fat yield by 51.5 g/d and tended to increase milk protein yield by 18.5 g/d. Monensin controlled-release capsules improved the efficiency of milk production of grazing dairy cows by increasing the yield of milk solids. However, a higher dose rate of monensin may be needed to reduce methane emissions from cows grazing pasture.  相似文献   

9.
The objective of the present study was to compare the enteric methane (CH4) emissions and milk production of spring-calving Holstein-Friesian cows offered either a grazed perennial ryegrass diet or a total mixed ration (TMR) diet for 10 wk in early lactation. Forty-eight spring-calving Holstein-Friesian dairy cows were randomly assigned to 1 of 2 nutritional treatments for 10 wk: 1) grass or 2) TMR. The grass group received an allocation of 17 kg of dry matter (DM) of grass per cow per day with a pre-grazing herbage mass of 1,492 kg of DM/ha. The TMR offered per cow per day was composed of maize silage (7.5 kg of DM), concentrate blend (8.6 kg of DM), grass silage (3.5 kg of DM), molasses (0.7 kg of DM), and straw (0.5 kg of DM). Daily CH4 emissions were determined via the emissions from ruminants using a calibrated tracer technique for 5 consecutive days during wk 4 and 10 of the study. Simultaneously, herbage dry matter intake (DMI) for the grass group was estimated using the n-alkane technique, whereas DMI for the TMR group was recorded using the Griffith Elder feeding system. Cows offered TMR had higher milk yield (29.5 vs. 21.1 kg/d), solids-corrected milk yield (27.7 vs. 20.1 kg/d), fat and protein (FP) yield (2.09 vs. 1.54 kg/d), bodyweight change (0.54 kg of gain/d vs. 0.37 kg of loss/d), and body condition score change (0.36 unit gain vs. 0.33 unit loss) than did the grass group over the course of the 10-wk study. Methane emissions were higher for the TMR group than the grass group (397 vs. 251 g/cow per day). The TMR group also emitted more CH4 per kg of FP (200 vs. 174 g/kg of FP) than did the grass group. They also emitted more CH4 per kg of DMI (20.28 vs. 18.06 g/kg of DMI) than did the grass group. In this study, spring-calving cows, consuming a high quality perennial ryegrass diet in the spring, produced less enteric CH4 emissions per cow, per unit of intake, and per unit of FP than did cows offered a standard TMR diet.  相似文献   

10.
Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4 production and milk FA concentration induced by dietary lipid supplements. The aim of this study was to perform a meta-analysis to quantify relationships between CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Data from 8 experiments encompassing 30 different dietary treatments and 146 observations were included. Yield of CH4 measured in these experiments was 21.5 ± 2.46 g/kg of dry matter intake (DMI) and 13.9 ± 2.30 g/kg of fat- and protein-corrected milk (FPCM). Correlation coefficients were chosen as effect size of the relationship between CH4 yield and individual milk FA concentration (g/100 g of FA). Average true correlation coefficients were estimated by a random-effects model. Milk FA concentrations of C6:0, C8:0, C10:0, C16:0, and C16:0-iso were significantly or tended to be positively related to CH4 yield per unit of feed. Concentrations of trans-6+7+8+9 C18:1, trans-10+11 C18:1, cis-11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of feed. Milk FA concentrations of C10:0, C12:0, C14:0-iso, C14:0, cis-9 C14:1, C15:0, and C16:0 were significantly or tended to be positively related to CH4 yield per unit of milk. Concentrations of C4:0, C18:0, trans-10+11 C18:1, cis-9 C18:1, cis-11 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of milk. Mixed model multiple regression and a stepwise selection procedure of milk FA based on the Bayesian information criterion to predict CH4 yield with milk FA as input (g/100 g of FA) resulted in the following prediction equations: CH4 (g/kg of DMI) = 23.39 + 9.74 × C16:0-iso – 1.06 × trans-10+11 C18:1 – 1.75 × cis-9,12 C18:2 (R2 = 0.54), and CH4 (g/kg of FPCM) = 21.13 – 1.38 × C4:0 + 8.53 × C16:0-iso – 0.22 × cis-9 C18:1 – 0.59 × trans-10+11 C18:1 (R2 = 0.47). This indicated that milk FA profile has a moderate potential for predicting CH4 yield per unit of feed and a slightly lower potential for predicting CH4 yield per unit of milk.  相似文献   

11.
Eighty-five multiparous Holstein cows were used in a completely randomized design with restrictions to evaluate the effects of prepartum carbohydrate (CHO) source and monensin on periparturient dry matter intake (DMI), blood parameters, and lactation performance of dairy cows. Dietary treatments were arranged in a 2 × 2 factorial arrangement with a conventional (CONV) dry cow diet and a nonforage fiber source (NFFS) dry cow diet not supplemented (−) or supplemented (+) with 330 mg/cow per d of monensin as a top dressing. The CONV diet contained 70% forage and the NFFS diet contained nonforage fiber sources such that 28% of the forage was replaced with cottonseed hulls and soyhulls. The experimental diets (CONV and NFFS) were fed throughout the entire dry period (for 60 d before parturition). Monensin was top dressed once daily starting 28 d (27 ± 1.8 SD) before the expected calving date and continued until parturition. After parturition, all cows received the same lactating cow diet. During the last 28 d of gestation, cows receiving the NFFS diets prepartum had greater DMI (15.8 vs. 11.9 kg/d), DMI as a percentage of body weight (2.1 vs. 1.6% of body weight), plasma glucose (67.4 vs. 64.6 mg/dL), and serum insulin concentrations (0.59 vs. 0.45 ng/mL), and lower plasma nonesterified fatty acid concentrations (185 vs. 245 μEq/L) compared with cows receiving the CONV diets prepartum. Average milk production or composition during the first 56 d of lactation was not significantly affected by prepartum source of CHO, monensin, or their combination; however, there was a trend for the prepartum CHO source to affect milk production over time. Supplementation of monensin as a top dressing for 28 d prepartum had no effect on periparturient measurements. The prepartum diet did not affect postpartum DMI, blood glucose, nonesterified fatty acids, insulin concentrations, or liver triglyceride content. Results from this research demonstrated that partly replacing conventional dietary carbohydrate sources with NFFS, cottonseed hulls and soyhulls, in the dry cow diet improved or maintained the prepartum DMI and therefore enhanced the prepartum metabolic status, as indicated by key blood metabolite concentrations. This greater prepartum DMI may potentially increase milk production during early lactation.  相似文献   

12.
The objective of this study was to determine the effects of monensin (M) supplementation on lactation performance of dairy cows fed diets of either reduced (RS) or normal (NS) starch concentrations as total mixed rations. One hundred twenty-eight Holstein and Holstein × Jersey cows (90 ± 33 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each in a randomized controlled trial. Pens were then randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement of treatments. A 4-wk covariate adjustment period preceded the treatment period, with all pens receiving NS supplemented with 18 g of monensin/t of dry matter (DM). Following the 4-wk covariate adjustment period, cows were fed their assigned treatment diets of NS with M (18 g of monensin/t), NS with 0 g of monensin/t (C), RS with M, or RS with C for 12 wk. Actual starch concentrations for the RS and NS diets were 20.4 and 26.9% (DM basis), respectively. Mean dry matter intake (DMI; 27.0 kg/d) was unaffected by the treatments. Feeding M compared with C and NS compared with RS increased milk yield by 1.3 and 1.5 kg/d per cow, respectively. Milk protein percentage and yield and lactose yield were increased and milk urea nitrogen was decreased for NS compared with RS. Feeding M increased actual and component-corrected milk feed efficiencies (component-corrected milk yield/DMI) and lactose yield and tended to increase milk urea nitrogen compared with C. Milk protein percentage was decreased for M compared with C, but milk fat percentage and yield, protein yield, and lactose percentage were unaffected by M. We observed a tendency for a starch × monensin interaction for milk feed efficiency (actual milk yield/DMI); M tended to increase efficiency more for NS than for RS. Starch and monensin had minimal effects on milk fatty acid composition and yields. Feeding RS decreased milk and protein yields, but component-corrected milk yields and feed efficiencies were similar for RS and NS. Monensin increased feed efficiency and lactation performance for both dietary starch concentrations.  相似文献   

13.
Eight multiparous Holstein cows averaging 570 ± 43 kg of body weight and 60 ± 20 d in milk were used in a double Latin square design with four 21-d experimental periods to determine the effects of feeding ground or whole flaxseed with or without monensin supplementation (0.02% on a dry matter basis) on milk production and composition, feed intake, digestion, blood composition, and fatty acid profile of milk. Intake of dry matter was similar among treatments. Cows fed whole flaxseed had higher digestibility of acid detergent fiber but lower digestibilities of crude protein and ether extract than those fed ground flaxseed; monensin had no effect on digestibility. Milk production tended to be greater for cows fed ground flaxseed (22.8 kg/d) compared with those fed whole flaxseed (21.4 kg/d). Processing of flaxseed had no effect on 4% fat-corrected milk yield and milk protein and lactose concentrations. Monensin supplementation had no effect on milk production but decreased 4% fat-corrected milk yield as a result of a decrease in milk fat concentration. Feeding ground compared with whole flaxseed decreased concentrations of 16:0, 17:0, and cis6-20:4 and increased those of cis6-18:2, cis9, trans11-18:2, and cis3-18:3 in milk fat. As a result, there was a decrease in concentrations of medium-chain and saturated fatty acids and a trend for higher concentrations of long-chain fatty acids in milk fat when feeding ground compared with whole flaxseed. Monensin supplementation increased concentrations of cis9 and trans11-18:2 and decreased concentrations of saturated fatty acids in milk fat. There was an interaction between flaxseed processing and monensin supplementation, with higher milk fat concentration of trans11-18:1 for cows fed ground flaxseed with monensin than for those fed the other diets. Flaxseed processing and monensin supplementation successfully modified the fatty acid composition of milk fat that might favor nutritional value for consumers.  相似文献   

14.
The effect of concentrate feeding level on enteric CH4 emissions from cows grazing medium quality summer pasture is yet to be investigated. Sixty multiparous Jersey cows (9 rumen-cannulated) were used in a randomized complete block design study (with the cannulated cows in a 3 × 3 Latin square design) to investigate the effect of concentrate feeding level (0, 4, and 8 kg/cow per day; as-fed basis) on enteric CH4 emissions, production performance, and rumen fermentation of dairy cows grazing summer pasture (17 cows plus 3 cannulated cows per treatment). Enteric CH4 emissions were measured from 11 cows per treatment group during one 7-d measurement period using the sulfur hexafluoride tracer gas technique. Pasture dry matter intake (DMI) was determined parallel with the CH4 measurement period using TiO2 as an external marker, and milk yield, milk composition, cow condition, and pasture pre- and postgrazing measurements were also recorded. Daily total DMI (11.2 to 15.6 kg/cow), milk yield (9.1 to 18.2 kg/cow), energy-corrected milk (ECM; 11.2 to 21.6 kg/cow), and milk lactose content (44.1 to 46.7 g/kg) increased linearly, whereas pasture DMI (11.2 to 8.4 kg/cow) decreased linearly with increasing concentrate feeding level. Daily CH4 production (323 to 378 g/d) increased linearly due to the increase in total DMI, whereas CH4 yield (29.1 to 25.1 g/kg of DMI) and CH4 intensity (35.5 to 21.1 g/kg of milk yield; and 28.8 to 17.6 g/kg of ECM) decreased linearly with increasing concentrate feeding level. Diurnal ruminal pH (6.45 to 6.32) and in sacco DM and neutral detergent fiber disappearance decreased linearly. Acetic and propionic acid were unaffected by treatment, whereas butyric acid (5.21 to 6.14 mM) increased linearly and quadratically with increasing concentrate feeding level. It was concluded that a high concentrate feeding level not only increases animal efficiency but is moreover a viable CH4 mitigation option for dairy cows grazing kikuyu-dominant pasture in late summer when pasture is inherently fibrous.  相似文献   

15.
A meta-analysis was conducted to develop a model for predicting dry matter intake (DMI) in dairy cows under the tropical conditions of Brazil and to assess its adequacy compared with 5 currently available DMI prediction models: Agricultural and Food Research Council (AFRC); National Research Council (NRC); Cornell Net Carbohydrate and Protein System (CNCPS; version 6); and 2 other Brazilian models. The data set was created using 457 observations (n = 1,655 cows) from 100 studies, and it was randomly divided into 2 subsets for statistical analysis. The first subset was used to develop a DMI prediction equation (60 studies; 309 treatment means) and the second subset was used to assess the adequacy of DMI predictive models (40 studies; 148 treatment means). The DMI prediction model proposed in the current study was developed using a nonlinear mixed model analysis after reparameterizing the NRC equation but including study as a random effect in the model. Body weight (mean = 540 ± 57.6 kg), 4% fat-corrected milk (mean = 21.3 ± 7.7 kg/d), and days in milk (mean = 110 ± 62 d) were used as independent variables in the model. The adequacy of the DMI prediction models was evaluated based on coefficient of determination, mean square prediction error (MSPE), root MSPE (RMSPE), and concordance correlation coefficient (CCC). The observed DMI obtained from the data set used to evaluate the prediction models averaged 17.6 ± 3.2 kg/d. The following model was proposed: DMI (kg/d) = [0.4762 (±0.0358) × 4% fat-corrected milk + 0.07219 (±0.00605) × body weight0.75] × (1 – e−0.03202 (±0.00615) × [days in milk + 24.9576 (±5.909)]). This model explained 93.0% of the variation in DMI, predicting it with the lowest mean bias (0.11 kg/d) and RMSPE (4.9% of the observed DMI) and the highest precision [correlation coefficient estimate (ρ) = 0.97] and accuracy [bias correction factor (Cb) = 0.99]. The NRC model prediction equation explained 92.0% of the variation in DMI and had the second lowest mean bias (0.42 kg/d) and RMSPE (5.8% of the observed DMI), as well as the second highest precision (ρ = 0.94) and accuracy (Cb = 0.98). The CNCPS and AFRC DMI prediction models explained 93.0 and 85.0% of the variation in DMI but underpredicted DMI by 1.8 and 1.4 kg/d, respectively. These 2 models (CNCPS and AFRC) resulted, respectively, in RMSPE of 11.3 and 10.7% of the observed DMI, with moderate to high precision (ρ = 0.81 and 0.82) and accuracy (Cb = 0.84 and 0.89). The remaining 2 models resulted in the poorest results, underpredicting DMI by 2.3 and 1.9 kg/d, with RMSPE of 22.8 and 14.9% of the observed DMI and moderate to low precision (ρ = 0.49 and 0.76) and accuracy (Cb = 0.81 and 0.86). The new model derived from the current meta-analytical approach provided the best accuracy and precision for predicting DMI in lactating dairy cows under Brazilian conditions.  相似文献   

16.
The objective of this study was to examine the effect of applying a fibrolytic enzyme preparation to diets with high (48% of diet dry matter, DM) or low (33% of diet DM) proportions of concentrate on production performance of lactating dairy cows. Sixty lactating Holstein cows (589 kg ± 20; 22 ± 3 d in milk) were stratified according to milk production and parity and randomly assigned to 4 treatments with a 2 × 2 factorial arrangement. Dietary treatments included the following: 1) low-concentrate diet (LC); 2) LC plus enzyme (LCE); 3) high-concentrate diet (HC); and 4) HC plus enzyme (HCE). The enzyme was sprayed at a rate of 3.4 mg of enzyme/g of DM on the total mixed ration daily and the trial lasted for 63 d. A second experiment with a 4 × 4 Latin square design used 4 ruminally fistulated cows to measure treatment effects on ruminal fermentation and in situ ruminal dry matter degradation during four 18-d periods. Enzyme application did not affect dry matter intake (DMI; 23.9 vs. 22.3 kg/d) or milk production (32.8 vs. 34.2 kg/d) but decreased estimated CH4 production, increased total volatile fatty acid concentration (114.5 vs. 125.7 mM), apparent total tract digestibility of DM (69.8 vs. 72.6%), crude protein (CP; 69.2 vs. 73.3%), acid detergent fiber (50.4 vs. 54.8%), neutral detergent fiber (53.7 vs. 55.4%), and the efficiency of milk production (1.44 vs. 1.60 kg of milk/kg of DMI). Feeding more concentrates increased DMI (21.5 vs. 24.8 kg/d), milk yield (32.2 vs. 34.7 kg/d), milk protein yield (0.89 vs. 0.99 kg/d), and DM (69.9 vs. 72.6%), but decreased ruminal pH (6.31 vs. 6.06). Compared with cows fed HC, those fed LCE had lower DMI (20.8 vs. 25.7 kg/d) and CP intake (3.9 vs. 4.8 kg/d), greater ruminal pH (6.36 vs. 6.10), and similar milk yield (33.2 ± 1.1 kg/d). Consequently, the efficiency of milk production was greater in cows fed LCE than those fed HC (1.69 vs. 1.42 kg of milk/kg of DMI). This fibrolytic enzyme increased the digestibility of DM, CP, neutral detergent fiber, and acid detergent fiber and the efficiency of milk production by dairy cows. Enzyme application to the low-concentrate diet resulted in as much milk production as that from cows fed the untreated high-concentrate diet.  相似文献   

17.
《Journal of dairy science》2019,102(11):10616-10631
There is a need to quantify methane (CH4) emissions with alternative methods. For the past decade, milk fatty acids (MFA) could be used as proxies to predict CH4 emissions from dairy cows because of potential common rumen biochemical pathways. However, equations have been developed based on a narrow range of diets and with limited data. The objectives of this study were to (1) construct a set of empirical models based on individual data of CH4 emissions and MFA from a large number of lactating dairy cows fed a wide range of diets; (2) further increase the models' level of complexity (from farm to research level) with additional independent variables such as dietary chemical composition (organic matter, neutral detergent fiber, crude protein, starch, and ether extract), dairy performance (milk yield and composition), and animal characteristics (days in milk or body weight); and (3) evaluate the performance of the developed models on independent data sets including measurements from individual animals or average measurements of groups of animals. Prediction equations based only on MFA [C10:0, iso C17:0 + trans-9 C16:1,cis-11 C18:1, and trans-11,cis-15 C18:2 for CH4 production (g/d); iso C16:0, cis-11 C18:1, trans-10 C18:1, and cis-9,cis-12 C18:2 for CH4 yield (g/kg of dry matter intake, DMI); and iso C16:0, cis-15 C18:1, and trans-10 + trans-11 C18:1 for CH4 intensity (g/kg of milk)] had a root mean squared error of 65.1 g/d, 2.8 g/kg of DMI, and 2.9 g/kg of milk, respectively, whereas complex equations that additionally used DMI, dietary neutral detergent fiber, ether extract, days in milk, and body weight had a lower root mean squared error of 46.6 g/d, 2.6 g/kg of DMI, and 2.7 g/kg of milk, respectively). External evaluation with individual or mean data not used for equation development led to variable results. When evaluations were performed using individual cow data from an external data set, accurate predictions of CH4 production (g/d) were obtained using simple equations based on MFA. Better performance was observed on external evaluation with individual data for the simple equation of CH4 production (g/d, based on MFA), whereas better performance was observed on external evaluation mean data for the simple equation of CH4 yield (g/kg of DMI). The performance of evaluation of the models is dependent on the domain of validity of the evaluation data sets used (individual or mean).  相似文献   

18.
The objective of our work was to supplement a forage and cereal diet of lactating dairy cows with whole cottonseed (WCS) for 12 wk and to determine whether the expected reduction in CH4 would persist. A secondary objective was to determine the effect of supplementing the diet with WCS on milk yield and rumen function over the 12-wk feeding period. Fifty lactating cows were randomly allocated to 1 of 2 diets (control or WCS). The 2 separate groups were each offered, on average, 4.2 kg of DM/cow per day of alfalfa hay (a.m.) and 6.6 kg of DM/cow per day of ryegrass silage (p.m.) on the ground in bare paddocks each day for 12 wk. Cows in each group were also individually offered dietary supplements for 12 wk in a feed trough at milking times of 5.4 kg of DM/cow per day of cracked wheat grain and 0.5 kg of DM/cow per day of cottonseed meal (control) or 2.8 kg of DM/cow per day of cracked wheat grain and 2.61 kg of DM/cow per day of WCS. The 2 diets were formulated to be similar in their concentrations of CP and ME, but the WCS diet was designed to have a higher fat concentration. Samples of rumen fluid were collected per fistula from the rumen approximately 4 h after grain feeding in the morning. Samples were taken from 8 cows (4 cows/diet) on 2 consecutive days in wk 2 of the covariate and wk 3, 6, 10, and 12 of treatment and analyzed for volatile fatty acids, ammonia-N, methanogens, and protozoa. The reduction in CH4 emissions (g/d) because of WCS supplementation increased from 13% in wk 3 to 23% in wk 12 of treatment. Similarly, the reduction in CH4 emissions (g/kg of DMI) increased from 5.1% in wk 3 to 14.5% in wk 12 of treatment. It was calculated that the average reduction in CH4 emissions over the 12-wk period was 2.9% less CH4 per 1% added fat, increasing from 1.5% in wk 3 to 4.4% less CH4 in wk 12. There was no effect of WCS supplementation on rumen ammonia-N, rumen volatile fatty acids, rumen methanogens, and rumen protozoa. On average over the 12-wk period, supplementation with WCS decreased the yield of milk (10%), fat (11%), protein (14%), lactose (11%), and fat plus protein (12%) and BW gain (31%). The WCS supplementation had no effect on milk fat concentration but resulted in a decrease in concentration of protein (5%) and lactose (11%). The major finding from this study is that addition of WCS to the diet of lactating dairy cows resulted in a persistent reduction in CH4 emissions (g of CH4/kg of DMI) over a 12-wk period and that these reductions in CH4 are consistent with previous work that has studied the addition of oilseeds to ruminant diets.  相似文献   

19.
The objective of this study was to determine the long-term effects of feeding monensin on milk fatty acid (FA) profile in lactating dairy cows. Twenty-four lactating Holstein dairy cows (1.46 ± 0.17 parity; 620 ± 5.9 kg of live weight; 92.5 ± 2.62 d in milk) housed in a tie-stall facility were used in the study. The study was conducted as paired comparisons in a completely randomized block design with repeated measurements in a color-coded, double blind experiment. The cows were paired by parity and days in milk and allocated to 1 of 2 treatments: 1) the regular milking cow total mixed ration (TMR) with a forage-to-concentrate ratio of 60:40 (control TMR; placebo premix) vs. a medicated TMR [monensin TMR; regular TMR + 24 mg of Rumensin Premix per kg of dry matter (DM)] fed ad libitum. The animals were fed and milked twice daily (feeding at 0830 and 1300 h; milking at 0500 and 1500 h). Milk samples were collected before the introduction of treatments and monthly thereafter for 6 mo and analyzed for FA composition. Monensin reduced the percentage of the short-and medium-chain saturated FA 7:0, 9:0, 15:0, and 16:0 in milk fat by 26, 35, 19, and 6%, respectively, compared with the control group. Monensin increased the percentage of the long-chain saturated FA in milk fat by 9%, total monounsaturated FA by 5%, total n-6 polyunsaturated FA (PUFA) by 19%, total n-3 PUFA by 16%, total cis-18:1 by 7%, and total conjugated linoleic acid (CLA) by 43% compared with the control group. Monensin increased the percentage of docosahexaenoic acid (22:6n-3), docosapentaenoic acid (22:5n-3), and cis-9, trans-11 CLA in milk fat by 19, 13, and 43%, respectively, compared with the control. These results suggest that monensin was at least partly effective in inhibiting the biohydrogenation of unsaturated FA in the rumen and consequently increased the percentage of n-6 and n-3 PUFA and CLA in milk, thus enhancing the nutritional properties of milk with regard to human health.  相似文献   

20.
The objective of this study was to evaluate the effects of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and the fatty acid profile in milk. Twelve multiparous Holstein dairy cows (710 ± 17.3 kg of live weight; 290 ± 41.9 d in milk) housed in a tie-stall facility were used in the study. The cows were paired by parity and days in milk and allocated to 1 of 2 treatments: 1) the regular milking cow total mixed ration (control diet), and 2) the regular milking cow total mixed ration supplemented with 5% myristic acid on a dry matter basis (MA diet). The cows were fed and milked twice daily (feeding, 0830 and 1300 h; milking, 0500 and 1500 h). The experiment was conducted as a completely randomized design and consisted of a 7-d pretrial period when cows were fed the control diet to obtain baseline measurements, a 10-d dietary adaptation period, and a 1-d, 8-h measurement period. The MA diet reduced methane (CH4) production by 36% (608.2 vs. 390.6 ± 56.46 L/d, control vs. MA diet, respectively) and milk fat percentage by 2.4% (4.2 vs. 4.1 ± 0.006%, control vs. MA diet, respectively). The MA diet increased 14:0 in milk by 139% and cis-9 14:1 by 195%. There was a correlation (r = −0.58) between the 14:0 content in milk and CH4 production and cis-9 14:1 and CH4 production (r = −0.47). Myristic acid had no effect on the contents of CLA or trans-10 18:1 and trans-11 18:1 isomers in milk. These results suggest that MA could be used to inhibit the activities of methanogens in ruminant animals without altering the conjugated linoleic acid and trans-18:1 fatty acid profile in milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号