首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以茶梗为原料,采用硫酸水解法制备纤维素纳米晶体(CNC),并运用响应面分析法对CNC制备工艺(即硫酸质量分数、反应温度和反应时间)进行优化;采用透射电子显微镜(TEM)、热重分析仪(TG)和X射线衍射仪(XRD)对CNC的形貌、热力学性能、结晶结构和结晶性能进行表征。结果表明,制备茶梗CNC的最佳反应时间125 min,温度45℃,硫酸质量分数为63%;在最佳工艺条件下获得的CNC的得率为49.9%,其为棒状,直径4~8 nm,长度100~250 nm,属纤维素I型;与茶梗纤维相比,茶梗CNC结晶度提高,热稳定性降低。  相似文献   

2.
为考察深共熔溶剂在烟碱绿色提取中的应用效果,以烤烟烟叶为提取原料,比较了不同种类的深共熔溶剂,并对影响烟碱得率的4个因素(深共熔溶剂含水率、提取时间、提取温度以及料液比)进行了单因素试验和响应面法工艺优化。结果表明:确定的最佳深共熔溶剂为氯化胆碱-尿素;优化后的工艺条件为氯化胆碱-尿素含水率32%(体积分数),提取温度40℃,提取时间30min,料液比10mg/mL。在优化的工艺条件下,烟碱理论得率为22.72mg/g,实测值22.89mg/g。以氯化胆碱-尿素作为深共熔溶剂提取烟叶中烟碱的方法是可行的,通过响应面法优化确定的工艺条件较可靠,可为烟碱的绿色提取提供方法参考。  相似文献   

3.
侯黔灵  范丽美 《中国油脂》2023,48(2):129-132
为促进油茶籽副产物的高值化利用,采用低共熔溶剂提取油茶籽壳中的原花青素,通过单因素试验考察了提取溶剂种类、摄取溶剂质量分数、料液比、提取温度和提取时间对原花青素得率的影响,并利用正交试验对油茶籽壳中原花青素提取的工艺条件进行优化。结果表明:低共熔溶剂提取油茶籽壳中原花青素的最优工艺条件为以氯化胆碱-柠檬酸(物质的量比1∶1)溶液为提取溶剂、氯化胆碱-柠檬酸溶液质量分数80%、料液比1∶25、提取温度80℃、提取时间40 min,在此条件下原花青素得率为5.26%。综上,低共熔溶剂可有效提取油茶籽壳中的原花青素。  相似文献   

4.
研究以绿色低共熔溶剂(DES)为溶媒提取柿叶黄酮的工艺。在单因素基础上结合响应面试验优化提取条件。结果显示:DES(氯化胆碱-乳酸)较其他DES提取效率高,最优提取条件为料液比1∶31 (g/mL)、氯化胆碱和乳酸的摩尔比为1∶14、提取温度90℃、提取时间41 min,在此条件下,黄酮实际得率为22.197 2%,较传统溶剂得率更高。  相似文献   

5.
采用预水解协同低共熔溶剂法(F-DES)制备芦苇纤维素纳米纤丝(CNF),通过对预水解芦苇得率、化学组分等的分析,探讨较佳预水解工艺,采用红外光谱、扫描电子显微镜、粒径分析、X射线衍射仪分析和热重分析等对预水解处理的芦苇以及芦苇CNF进行了表征。研究结果表明,芦苇预水解的较佳条件为:液比1∶6,预水解温度165℃,保温时间50 min。预水解芦苇得率为80.31%,α-纤维素含量为49.62%,预水解处理芦苇纤维素晶型结构未发生变化,保持纤维素Ⅰ型结构。F-DES体系处理预水解芦苇制备CNF的较优工艺条件为:FeCl3·6H2O用量为0.2 mmol/g DES,草酸二水合物/氯化胆碱(Oxd/Ch Cl)质量比为4∶1,反应时间6 h,温度80℃。制备的CNF粒径为200~800 nm,总体呈现均匀的纳米纤丝状,优化条件下制备的CNF中有90%的粒径分布在300~400 nm之间。  相似文献   

6.
低共熔溶剂预处理制备豆渣纤维素纳米纤丝的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用氯化胆碱-草酸、氨基磺酸-尿素、氯化胆碱-柠檬酸分别经混合加热法制备了3种低共熔溶剂(DES),探讨了不同低共熔溶剂对豆渣纤维素预处理效果的影响。结果表明,3种DES均能够提纯豆渣纤维素,其中氯化胆碱-草酸体系对豆渣提纯纤维素效果最好,综纤维素含量为95.81%,且得到的α-纤维素含量高达92.60%,经高压均质后得到豆渣纤维素纳米纤丝(CNF),其直径为27~30 nm。氯化胆碱-柠檬酸体系和氨基磺酸-尿素体系分别预处理的豆渣经高压均质制备得到的纤维直径在0.1~0.5μm左右,未达到纳米级。  相似文献   

7.
响应面试验优化苹果渣微晶纤维素制备工艺   总被引:2,自引:0,他引:2  
研究利用苹果渣纤维素制备微晶纤维素的方法过程。在水解时间50min、水解温度100℃条件下,采用响应曲面设计法设计、分析,研究酸水解纤维素制备微晶纤维素时,各因素料液比、盐酸质量分数和次氯酸钠添加量及3因素间两两交互作用对微晶纤维素得率的影响。结果表明,各因素对得率影响的显著性表现为盐酸质量分数>料液比>次氯酸钠添加量。分析等高线和响应面,得出各因素两两之间的交互作用对得率都显著。通过求解回归方程得出最佳工艺条件为料液比1:25(g/mL)、盐酸质量分数6%、次氯酸钠添加量2.5mL/100mL,此条件下微晶纤维素制备得率达到69.5%。  相似文献   

8.
以茶渣为原料,采用盐酸水解法制备茶渣微晶纤维素。通过单因素试验研究了酸解时间、酸解温度、盐酸浓度及料液比对微晶纤维素得率、聚合度和结晶度的影响,采用正交试验优化了工艺参数,并运用X-射线衍射和红外光谱对微晶纤维素产品进行表征。试验结果表明:最佳制备工艺条件为酸解温度95℃、盐酸质量分数8%、酸解时间90 min、料液比1∶16(g/mL)。各因素对得率影响的显著性为:酸解温度盐酸浓度酸解时间料液比;在此条件下,茶渣微晶纤维素产品的得率为54.34%,聚合度为128;X-射线衍射和红外光谱分析表明,茶渣微晶纤维素与原纤维素材料结构一致,结晶度达67.77%,晶粒尺寸为3.98 nm,晶型为纤维素Ⅰ型。  相似文献   

9.
白酒糟含有丰富的纤维素和半纤维素组分,是制备食品添加剂微晶纤维素(MCC)的良好原料来源。在硝酸-乙醇法提取酒糟粗纤维的基础上,探索酸法水解制备高纯度酒糟微晶纤维素(GSMCC)的工艺参数并进行结构表征。着重考察盐酸浓度、温度、液固比和时间4个因素对GSMCC纯度和得率的影响,并通过响应面优化法确定最优工艺参数。结果表明,酒糟粗纤维在温度72.3℃,盐酸质量分数7.5%,液固比25∶1(mL/g)的最优条件下水解2 h,可制得纯度92.57%、聚合度276.39的GSMCC,得率高达89.25%;经漂白后纯度略增至93.31%,聚合度降为255.86。扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)和X衍射(XRD)分析发现,GSMCC的微观形貌呈不规则颗粒状,具有典型纤维素的红外光谱特征,纤维素晶型为Ⅰ型,结晶度为67.49%。热重分析(TGA)表明GSMCC热稳定性良好。本试验结果说明利用白酒糟制备食品添加剂微晶纤维素的工艺可行且具有良好结构特性。  相似文献   

10.
以朝鲜蓟花苞为原料,采用超声辅助低共熔溶剂(DES)提取朝鲜蓟总多酚。以总多酚得率为指标,在单因素试验的基础上通过响应面试验优化朝鲜蓟总多酚提取工艺。结果表明:最佳提取条件为料液比1∶20(g/L)、超声功率500 W、超声时间36min、超声温度63℃、L-苹果酸-氯化胆碱摩尔比1∶4、含水量63%,在此条件下朝鲜蓟总多酚得率为(11.25±0.12)mg/g。  相似文献   

11.
天然低共熔溶剂提取油茶蒲中植物多酚的研究   总被引:2,自引:0,他引:2  
以油茶蒲为原料,对照传统的水和60%乙醇溶液,选择几种天然低共熔溶剂提取油茶蒲中的植物多酚,考察了天然低共熔溶剂对多酚得率的影响。通过单因素试验和响应面试验对天然低共熔溶剂提取油茶蒲中多酚的工艺条件进行了研究和优化。结果发现:天然低共熔溶剂具有比传统溶剂更好的提取效果;油茶蒲中多酚提取的最优条件为提取溶剂柠檬酸-氯化胆碱(摩尔比1∶3)、提取时间37 min、提取温度81℃、液料比42∶1,在最优条件下多酚得率为0. 932 1%。  相似文献   

12.
该文研究在低温条件下,用乙醇作为溶剂,从大豆磷脂粉中精制磷脂酰胆碱工艺。通过单因素实验考察了提取温度、提取时间、乙醇浓度和料液比等因素在不同水平下对磷脂酰胆碱含量和得率影响。在综合考虑纯度和得率基础上,选取以乙醇(95%)为溶剂,提取温度–10℃、提取时间20 h、液料比为8∶1条件下进行中试。中试产品磷脂酰胆碱的纯度为71.74%,得率为13.48%。  相似文献   

13.
该文研究在低温条件下,用乙醇作为溶剂,从大豆磷脂粉中精制磷脂酰胆碱工艺。通过单因素实验考察了提取温度、提取时间、乙醇浓度和料液比等因素在不同水平下对磷脂酰胆碱含量和得率影响。在综合考虑纯度和得率基础上,选取以乙醇(95%)为溶剂,提取温度–10℃、提取时间20 h、液料比为8∶1条件下进行中试。中试产品磷脂酰胆碱的纯度为71.74%,得率为13.48%。  相似文献   

14.
目的:采用一种新型溶剂提取野菊花总黄酮,并对其提取工艺进行考察。方法:以野菊花总黄酮得率为指标,采用单因素实验和响应面试验优化野菊花总黄酮的提取工艺。结果:用摩尔比1:3的氯化胆碱和1,4-丁二醇制备低共熔溶剂,当低共熔溶剂含水量为28%,料液比1:25 g/mL,温度65 ℃下超声(功率450 W)提取38 min时,总黄酮得率可达62.16 mg/g。结论:低共熔溶剂可作为一种新型的溶剂高效提取野菊花中总黄酮。  相似文献   

15.
采用低共熔溶剂(deep eutectic solvent,DES)考察对荞麦壳中黄酮类化合物提取效果,首先制备6种不同组分构成的DES提取荞麦壳黄酮,筛选出提取率最佳的DES。通过单因素试验确定荞麦壳粉碎粒度和提取温度,并用响应面法优化DES含水量、液固比和提取时间,获得最佳提取工艺参数。结果显示:氯化胆碱/尿素(摩尔比1∶2)是提取荞麦壳黄酮最佳的DES溶剂,荞麦壳粉碎粒度为100目,提取温度为70℃,最优工艺条件为DES含水量35%、液固比52∶1(mL/g)、提取时间2.8 h,此条件下,荞麦壳黄酮提取率为4.79%,优于传统的乙醇法,因此DES可有效地提升荞麦壳黄酮的提取率。  相似文献   

16.
白酒丢糟制备微晶纤维素工艺优化及结构特性   总被引:2,自引:2,他引:0  
白酒丢糟(DG)是一种富含纤维素的木质纤维素生物质,为充分转化利用丢糟资源,探索其制备药用辅料微晶纤维素(MCC)的可行性。从丢糟中提取出高纯度纤维素,采用稀盐酸水解法制备丢糟微晶纤维素(DGMCC),考察了盐酸浓度、时间、温度和料液比等因素对产品聚合度和得率的影响,并通过正交实验优化制备工艺。结果表明,从丢糟中提取的纤维素纯度为94.55%;丢糟纤维素在料液比为1:15(g/mL)、盐酸浓度为6%(V/V)、温度为70 ℃的最优条件下水解60 min可制得聚合度为288的DGMCC产品,得率为27.01%。利用FTIR、SEM、XRD、TGA和DSC等手段对DGMCC微观形貌、结晶结构和热稳定性进行表征。FTIR说明DGMCC的主要成分为纤维素;SEM和XRD表明DGMCC呈不规则球形颗粒,纤维素晶型为Ⅰ型,相对结晶度为62.47%,晶粒尺寸为54.95 nm。TGA和DSC表明DGMCC在365.3 ℃处有一尖锐的结晶熔融吸热峰,初始热分解温度高于原料DG,热稳定性好。  相似文献   

17.
针对现有结晶法制备甜菊糖中存在的结晶步骤复杂、回收率低、结晶周期长等问题,提出了二次结晶法从甜菊糖粗品中提取高纯度RA的新工艺。同时研究了提取溶剂、固液比、结晶温度、结晶时间等对结晶效果的影响,优化了现有结晶工艺,简化了结晶步骤。实验表明,结晶法制备高纯度RA的最佳工艺为:一次结晶提取溶剂为无水甲醇(质量分数99%),固液比为1∶5 g/m L,溶解温度为50℃,结晶时间为2 h;二次结晶提取剂为86%~88%的乙醇溶液,固液比1∶4g/m L,溶解温度为50℃,结晶时间为16~24 h。两次结晶RA总得率为70.9%,通过本结晶工艺,可制得RA的质量分数为97.51%的甜菊糖产品。  相似文献   

18.
以低磷脂酰胆碱(PC)含量大豆粉末磷脂为原料,建立以碱性乙醇为溶剂结合冷冻纯化制备高纯度磷脂酰肌醇(PI)的方法。在单因素实验的基础上利用响应面优化实验确定PI的最佳提取条件为:冷冻时间17 h,冷冻温度-20℃,提取温度40℃,料液比1∶27,98%乙醇与25%氨水体积比100∶4,提取时间40 min,提取次数3次。在最佳条件下,产物PI含量为82.62%,得率为14.29%。  相似文献   

19.
本研究以椰子中果皮为原料,采用硝酸-乙醇法提取纤维素,并将提取的纤维素水解制备微晶纤维素;采用分光光度法测定纤维素含量,滴定法测定微晶纤维素得率。单因素实验结果表明椰子中果皮纤维素提取的适宜工艺条件为:80℃下水浴回流2h、料液比为1∶20(g/m L)、酸醇比为1∶3、该条件下,提取所得纤维素含量为75.24μg/m L。以提取的椰子中果皮纤维素为原料制备微晶纤维素的适宜工艺条件为:水解温度100℃、水解时间70min、盐酸质量分数7%、料液比1∶15(g/m L),在此条件下,微晶纤维素得率为97.50%;将制备出来的微晶纤维素进行了红外表征。本工艺能够较好地提高椰子中果皮的应用价值。  相似文献   

20.
菊芋秸秆是一种富含纤维素的生物质资源,为使其充分转化利用,本文探索了菊芋秸秆(JAS)制备食品添加剂微晶纤维素的可行性。以JAS为原料,采用稀盐酸水解法制备微晶纤维素(JASMCC),着重考察盐酸质量分数、水解时间、温度和料液比4个因素对JASMCC产品聚合度和得率等指标的影响,并通过响应面法优化工艺参数。结果表明:菊芋秸秆中纤维素含量高达43.61%以上。经响应面法优化的JASMCC的最佳制备工艺参数为:料液比1∶14 g/m L、盐酸质量分数5%、温度60℃、时间85 min。在此工艺下所得JASMCC产品的聚合度为255.14,得率为36.96%,纯度为97.80%,符合国标GB1886.103-2015《食品添加剂微晶纤维素》要求。利用傅里叶变换红外光谱、扫描电镜和X-射线衍射对JASMCC制备过程中的微观形貌和结晶结构进行表征,并与商业微晶纤维素比较,结果发现JASMCC的微观形态呈棒状,纤维素晶型为Ⅰ型,相对结晶指数为63.42%,说明利用菊芋秸秆制备食品添加剂微晶纤维素的工艺可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号