首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to determine the feeding value of sweet sorghum silage (SS) for dairy cows compared with alfalfa silage (AS). Two diets were formulated with a 50:50 forage:concentrate ratio. Sweet sorghum silage and AS constituted 70% of the forage in each diet (dry matter basis). Twelve lactating Holstein cows in early lactation were used in a crossover experiment. Relative to AS, SS contained 58% more neutral detergent fiber and 36.6 and 72.7% less acid detergent lignin and crude protein, respectively. Milk yield (33.0 vs. 36.7 kg/d) was lower for cows fed SS than for those fed AS. However, dry matter intake, energy-corrected milk, and feed efficiency were similar for both dietary treatments. Replacing AS with SS increased concentrations of milk fat (4.44 vs. 3.80%) and total solids (13.31 vs. 12.88%) and reduced concentrations of milk lactose (4.55 vs. 4.61%), milk solids-not-fat (8.88 vs. 9.08%), and milk urea nitrogen (10.0 vs. 14.0 mg/dL). We concluded that replacing AS with SS had negative effects on milk yield, whereas dry matter intake, energy-corrected milk, and milk efficiency were similar.  相似文献   

2.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars.  相似文献   

3.
Twenty Holstein cows were used in a randomized complete block experiment to determine the feeding value of pearl millet silage (MS) for dairy cows relative to corn silage (CS). Two isonitrogenous diets were formulated with a 53:47 forage:concentrate ratio. Pearl millet silage and CS comprised 67% of the forages in each diet. Relative to CS, MS contained higher crude protein (13.0 vs. 9.4%), neutral detergent fiber (66.9 vs. 40.7%), and acid detergent fiber (38.8 vs. 23.9%). Dietary treatments had no effect on dry matter (average = 23.9 kg/d) or crude protein (average = 4.2 kg/d) intake. However, cows fed MS consumed more neutral detergent fiber (9.7 vs. 8.3 kg/d) than did cows fed CS. Silage type had no effect on milk yield (average 38.0 kg/d), whereas energy-corrected milk (43.8 vs. 38.6) and 4% fat-corrected milk (41.8 vs. 35.5 kg/d) were greater for cows fed MS than for those fed CS. Milk protein, lactose, and total solids concentrations were not influenced by dietary treatments. However, cows fed MS produced milk with a greater milk fat concentration (4.17 vs. 3.78%) than did cows fed CS. We concluded that MS, when compared with CS, had a similar effect on feed intake, milk yield, and milk efficiency. Because of increased milk fat concentration, cows fed MS produced more energy-corrected milk than did cows fed CS.  相似文献   

4.
Four Holstein cows fitted with ruminal cannulas were used in a 4 × 4 Latin square design (28-d periods) with a 2 × 2 factorial arrangement of treatments to investigate the effects of addition of a specific mixture of essential oil compounds (MEO; 0 vs. 750 mg/d) and silage source [alfalfa silage (AS) vs. corn silage (CS)] on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition. Total mixed rations containing either AS or CS as the sole forage source were balanced to be isocaloric and isonitrogenous. In general, no interactions between MEO addition and silage source were observed. Except for ruminal pH and milk lactose content, which were increased by MEO supplementation, no changes attributable to the administration of MEO were observed for feed intake, nutrient digestibility, end-products of ruminal fermentation, microbial counts, and milk performance. Dry matter intake and milk production were not affected by replacing AS with CS in the diet. However, cows fed CS-based diets produced milk with lower fat and higher protein and urea N concentrations than cows fed AS-based diets. Replacing AS with CS increased the concentration of NH3-N and reduced the acetate-to-propionate ratio in ruminal fluid. Total viable bacteria, cellulolytic bacteria, and protozoa were not influenced by MEO supplementation, but the total viable bacteria count was higher with CS- than with AS-based diets. The apparent digestibility of crude protein did not differ between the AS and CS treatments, but digestibilities of neutral detergent fiber and acid detergent fiber were lower when cows were fed CS-based diets than when they were fed AS-based diets. Duodenal bacterial N flow, estimated using urinary purine derivatives and the amount of N retained, increased in cows fed CS-based diets compared with those fed AS-based diets. Feeding cows AS increased the milk fat contents of cis-9, trans-11 18:2 (conjugated linoleic acid) and 18:3 (n-3 fatty acid) compared with feeding cows CS. Results from this study showed limited effects of MEO supplementation on nutrient utilization, ruminal fermentation, and milk performance when cows were fed diets containing either AS or CS as the sole forage source.  相似文献   

5.
Feeding trials were conducted with lactating cows and growing lambs to quantify effects of replacing dietary alfalfa silage (AS) with red clover silage (RCS) on nutrient utilization. The lactation trial had a 2 × 4 arrangement of treatments: AS or RCS fed with no supplement, rumen-protected Met (RPM), rumen-protected Lys (RPL), or RPM plus RPL. Grass silage was fed at 13% of dry matter (DM) with AS to equalize dietary neutral detergent fiber (NDF) and crude protein contents. All diets contained (DM basis) 5% corn silage and 16% crude protein. Thirty-two multiparous (4 ruminally cannulated) plus 16 primiparous Holstein cows were blocked by parity and days in milk and fed diets as total mixed rations in an incomplete 8 × 8 Latin square trial with four 28-d periods. Production data (over the last 14 d of each period) and digestibility and excretion data (at the end of each period) were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Although DM intake was 1.2 kg/d greater on AS than RCS, milk yield and body weight gain were not different. However, yields of fat and energy-corrected milk as well as milk content of fat, true protein, and solids-not-fat were greater on AS. Relative to AS, feeding RCS increased milk and energy-corrected milk yield per unit of DM intake, milk lactose content, and apparent N efficiency and reduced milk urea. Relative to AS, apparent digestibility of DM, organic matter, NDF, and acid detergent fiber were greater on RCS, whereas apparent and estimated true N digestibility were lower. Urinary N excretion and ruminal concentrations of ammonia, total AA, and branched-chain volatile fatty acids were reduced on RCS, indicating reduced ruminal protein degradation. Supplementation of RPM increased intake, milk true protein, and solids-not-fat content and tended to increase milk fat content. There were no silage × RPM interactions, suggesting that RPM was equally limiting on both AS and RCS. Supplementation of RPL did not influence any production trait; however, a significant silage × RPL interaction was detected for intake: RPL reduced intake of AS diets but increased intake of RCS diets. Duplicated metabolism trials were conducted with lambs confined to metabolism crates and fed only silage. After adaptation, collections of silage refusals and excreta were made during ad libitum feeding followed by feeding DM restricted to 2% of body weight. Intake of DM was not different when silages were fed ad libitum. Apparent digestibility of DM, organic matter, NDF, and hemicellulose was greater in lambs fed RCS on both ad libitum and restricted intake; however, acid detergent fiber digestibility was only greater at restricted intake. Apparent and estimated true N digestibility was substantially lower, and N retention was reduced, on RCS. Results confirmed greater DM and fiber digestibility in ruminants and N efficiency in cows fed RCS. Specific loss of Lys bioavailability on RCS was not observed. Based on milk composition, Met was the first-limiting AA on both silages; however, Met was not limiting based on production and nutrient efficiency. Depressed true N digestibility suggested impaired intestinal digestibility of rumen-undegraded protein from RCS.  相似文献   

6.
Twelve Holstein cows were used in a replicated Latin square experiment to determine the effect of adding dried molasses to high-alfalfa silage diets on dairy cow performance. Three isonitrogenous diets were formulated with a 68:32 forage:concentrate ratio, with alfalfa silage as the only forage source. Dietary treatments were a control diet with no added molasses and 3 and 6% dried molasses diets. Three lactating Holstein cows fitted with ruminal cannulas were used to determine the effects of dietary treatments on ruminal fermentation. Dietary treatments had no effect on dry matter (average 23.3 kg/d), crude protein (average 4.4 kg/d), or neutral detergent fiber (average 7.4 kg/d) intake. Milk yield, energy-corrected milk (average 35.4 kg/d), and 4% fat-corrected milk (average 33.8 kg/d) were not influenced by dietary treatments. Cows fed the control diet produced milk with less milk urea nitrogen concentration than those fed molasses-supplemented diets. Ruminal pH, NH3-N concentration, and total volatile fatty acids were not different among dietary treatments. The molar proportion of acetate linearly increased, whereas the molar proportion of propionate linearly decreased as the level of dried molasses increased. It was concluded that addition of dried molasses to high-alfalfa silage diets at 6% of the diet (dry matter basis) increased milk urea nitrogen but had no effect on animal performance.  相似文献   

7.
Two lactation trials were conducted comparing the feeding value of silages made from birdsfoot trefoil (BFT, Lotus corniculatus L.) that had been selected for low (BFTL), medium (BFTM), and high (BFTH) levels of condensed tannins (CT) to an alfalfa silage (AS) when fed as the principal forage in total mixed rations. Diets also included corn silage, high-moisture shelled corn, soybean meal, soy hulls, and supplemental fat. In trial 1, 32 lactating Holstein cows were blocked by days in milk, assigned to treatment sequences in 8 balanced 4 × 4 Latin squares, and fed 50% dietary dry matter from AS or 1 of 3 BFT silages containing 0.6, 1.2, or 1.7% CT. Diets averaged 17.5 to 19.5% crude protein and 26% neutral detergent fiber on a dry matter basis. Data were collected over the last 2 wk of each 4-wk period. Intakes were 1.3 to 2.8 kg of dry matter/d greater on BFT than on AS and cows gained 0.5 kg of body weight/d on BFT diets while losing 0.14 kg of body weight/d on the AS diet; this resulted in greater milk per dry matter intake (DMI) on AS. Linear effects indicated true protein yield and milk urea nitrogen declined with increasing CT concentration and quadratic effects indicated DMI, energy-corrected milk, and fat yield were increased at intermediate CT concentration. True protein yield and apparent N-efficiency were greater, and milk urea nitrogen lower, on all BFT diets than on AS. In trial 2, 50 lactating Holstein cows were fed a covariate AS diet for 2 wk and then blocked by parity and days in milk and randomly assigned to 1 of 5 diets that were fed continuously for 12 wk. Diets contained (dry matter basis) 48% AS, 16% AS plus 32% of 1 of 3 BFT silages with 0.5, 0.8, or 1.5% CT, or 48% of an equal mixture of each BFT silage. Diets averaged 16.5% crude protein and 30% neutral detergent fiber. Intake and milk yield tended to be lower on AS than BFT, but body weight gains averaged 0.6 kg/d on all diets. Cows fed any of the BFT silages had reduced milk urea nitrogen and ruminal ammonia and reduced urinary N excretion. Feeding the BFT mixture reduced concentrations of milk true protein and milk urea nitrogen and depressed apparent nutrient digestibility. Among diets containing the individual BFT silages, linear reductions in DMI and yield of milk, fat, true protein, lactose, and SNF were observed with increasing CT concentration. By contrast, a previous trial with the same BFT populations showed that substituting BFTH silage containing 1.6% CT for AS in rations containing 60% silage dry matter had no effect on intake, increased yield of milk, energy-corrected milk and milk components, elevated protein use-efficiency, but with a more modest reduction in milk urea nitrogen and urinary N excretion. Silage analyses suggested that the inconsistent responses among trials were related to growth environment or ensiling effects that altered tannin-protein interactions in BFT silage. Differences in diet formulation among trials may have also influenced responses. Results from the current and previous trials indicate further work is needed to identify optimum tannin levels in forages.  相似文献   

8.
The objective of this study was to investigate the effects of changing forage source in dairy cow diets from timothy silage (TS) to alfalfa silage (AS) on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio of 60:40, dry matter basis), with the forage portion consisting of either TS (0% AS; 0% AS and 54.4% TS in the TMR), a 50:50 mixture of both silages (50% AS; 27.2% AS and 27.2% TS in the TMR), or AS (100% AS; 54.4% AS and 0% TS in the TMR). Compared with TS, AS contained less (36.9 vs. 52.1%) neutral detergent fiber but more (20.5 vs. 13.6%) crude protein (CP). In sacco 24-h ruminal degradability of organic matter (OM) was higher for AS than for TS (73.5 vs. 66.9%). Replacement of TS with AS in the diet entailed increasing proportions of corn grain and bypass protein supplement at the expense of soybean meal. As the dietary proportion of AS increased, CP and starch concentrations increased, whereas fiber content declined in the TMR. Dry matter intake increased linearly with increasing AS proportions in the diet. Apparent total-tract digestibility of OM and gross energy remained unaffected, whereas CP digestibility increased linearly and that of fiber decreased linearly with increasing inclusion of AS in the diet. The acetate-to-propionate ratio was not affected, whereas ruminal concentration of ammonia (NH3) and molar proportion of branched-chain VFA increased as the proportion of AS in the diet increased. Daily CH4 emissions tended to increase (476, 483, and 491 g/d for cows fed 0% AS, 50% AS, and 100% AS, respectively) linearly as cows were fed increasing proportions of AS. Methane production adjusted for dry matter intake (average = 19.8 g/kg) or gross energy intake (average = 5.83%) was not affected by increasing AS inclusion in the diet. When expressed on a fat-corrected milk or energy-corrected milk yield basis, CH4 production increased linearly with increasing AS dietary proportion. Urinary N excretion (g/d) increased linearly when cows were fed increasing amounts of AS in the diet, suggesting a potential for higher nitrous oxide (N2O) and NH3 emissions. Efficiency of dietary N use for milk protein secretion (g of milk N/g of N intake) declined with the inclusion of AS in the diet. Despite marked differences in chemical composition and ruminal degradability, under the conditions of this study, replacing TS with AS in dairy cow diets was not effective in reducing CH4 energy losses.  相似文献   

9.
《Journal of dairy science》2021,104(9):9842-9852
This study aimed to evaluate the effects of partially replacing corn silage (CS) with whole-plant soybean silage (SS) or black oat silage (OS) on nutrient intake and digestibility, in vitro neutral detergent fiber degradability of silages, feeding behavior, rumen fermentation, and performance of dairy cows. Twenty-four lactating Holstein cows (6 of which were rumen-cannulated) with 32.5 ± 4.92 kg/d milk yield, 150 ± 84.8 days in milk, and 644 ± 79.0 kg of body weight were used in a 3 × 3 Latin square design to evaluate the following treatments: (1) corn silage diet (CSD): using corn silage as the only forage source in the diet [48% dietary dry matter (DM)]; (2) whole-plant soybean silage diet (SSD): SS replacing 16% of corn silage from CSD; and (3) black oat silage diet (OSD): OS replacing 16% of corn silage from CSD. The inclusion of OS and SS decreased intakes of DM, organic matter, and crude protein. Corn silage had the greatest in vivo effective degradability of DM, and SS had the least effective degradability of neutral detergent fiber. The OSD treatment decreased milk and protein yields, whereas SSD increased rumen ammonia nitrogen concentration compared with the other diets. Cows fed OSD exhibited a greater preference for feed with small particles (<4 mm) compared with those fed SSD. Cows fed treatments containing either SS or OS at the expense of CS had increased rumination and chewing activities. Although replacing CS with OS and SS reduced feed intake, SS had no effect on productive performance of dairy cows.  相似文献   

10.
Eight intact multiparous cows and four ruminally and duodenally cannulated primiparous cows were fed four diets in a replicated 4 x 4 Latin square design: 1) 17% forage neutral detergent fiber (NDF) with brown midrib corn silage (BMRCS), 2) 21% forage NDF with BMRCS, 3) 17% forage NDF with conventional corn silage (CCS), and 4) 21% forage NDF with CCS. Diets contained 17.4% crude protein and 38.5% NDF. Each period consisted of 4 wk for intact cows and 2 wk for cannulated cows. For intact cows, DM intake was higher for BMRCS than CCS, and milk urea N was higher for 21 than 17% forage NDF. Milk protein yield tended to be higher and milk urea N lower for cows fed BMRCS than those fed CCS. Milk yield and milk protein percentage were similar among treatments. For the cannulated cows, ruminal mat consistency was similar among treatments. Based on a 72 h in situ incubation, BMRCS was lower in indigestible NDF than CCS. The BMRCS resulted in a higher proportion of ruminal propionate than CCS. Cows fed 21% forage NDF had a higher proportion of acetate and a lower proportion of propionate than cows fed 17% forage NDF. The total tract digestibility of nutrients and efficiency of bacterial N synthesis were similar among treatments, except that BMRCS resulted in lower intestinal fatty acid digestibility than CCS, and 17% forage NDF tended to result in higher total tract fatty acid digestibility than 21% forage NDF. Ruminal NDF digestibility was similar among dietary treatments. The increased milk production observed from feeding BMRCS in some studies may be explained by higher DM intake rather than increased total tract digestibility of the diets.  相似文献   

11.
Silage treated with lactic acid bacteria inoculants has been reported to increase ruminal microbial biomass when tested in vitro. Therefore, we tested if alfalfa silage inoculated with Lactobacillus plantarum MTD-1 would improve ruminal N metabolism and increase milk production in high-producing dairy cows. Twenty-eight early lactation Holstein cows (8 ruminally cannulated) were blocked by DIM and milk production; animals were used in a double crossover design consisting of four 28-d periods. Animals in each block were randomly assigned to 2 treatments: a diet containing uninoculated alfalfa silage (control) and a diet containing alfalfa silage inoculated with L. plantarum MTD-1 (LP). Diets were formulated to contain 50% of alfalfa silage, 16% crude protein, and 25% neutral detergent fiber (dry matter basis). Milk production and dry matter intake were recorded in the last 14 d of each period. Milk samples were collected twice at both daily milkings on d 20, 21, 27, and 28 of each period. On d 22, omasal samples were collected from the cannulated animals over a period of 3 d to quantify ruminal digestibility and nutrient flows. Data were analyzed using mixed models of SAS 9.4 (SAS Institute). Compared to the control, cows receiving the LP treatment had greater milk production (40.4 vs. 39.6 kg/d) and lower milk urea nitrogen concentration (11.6 vs. 12.7 mg/dL), despite minor changes in energy-corrected milk. Milk lactose concentration was greater in the milk produced by cows fed the LP treatment, which reflected a tendency for increased milk lactose yield. Although milk true protein concentration was lower for cows in the LP treatment, milk true protein yield was the same on both control and LP treatments. Improvements in milk production of animals under the LP treatment were associated with greater organic matter truly digested in the rumen, especially ruminal neutral detergent fiber digestion. Minor changes were observed in total omasal microbial nonammonia N flow in cows receiving the LP treatment. Therefore, alfalfa silage treated with L. plantarum MTD-1 may improve ruminal fermentation and milk production; however, because of a lack of response in ruminal N metabolism, these changes did not result in greater energy-corrected milk in high-producing dairy cows.  相似文献   

12.
Six Holstein cows in early lactation were used in a double 3 x 3 Latin square design to determine the effects of feeding diets with pea silage, relative to barley silage, or alfalfa silage. Cows were fed rations formulated to contain 50:50 forage:concentrate ratio. Two ruminally fistulated cows were used in a randomized complete block design to determine ruminal nutrient degradability for pea silage relative to barley and alfalfa silages. Pea silage contained lower neutral detergent fiber (NDF), acid detergent fiber, and starch concentrations but higher crude protein than barley silage. Compared with alfalfa silage, pea silage had higher starch and NDF but lower crude protein content. Pea and alfalfa silage had similar effective ruminal degradability of dry matter, which was higher than that of barley silage. The rate of degradation and effective ruminal degradability of NDF was highest for alfalfa silage, intermediate for pea silage and lowest for barley silage. Results of the lactation trial showed that dry matter intake and milk yield were not affected by forage source. Milk composition was similar for cows fed pea or barley silage; however, cows fed pea silage produced milk with a higher fat and a lower protein percentage than those fed the alfalfa silage. Pea silage can replace barley or alfalfa silage as a forage source for dairy cows in early lactation.  相似文献   

13.
Total mixed rations containing corn silage (CS) or forage sorghum silage (SS) were fed to mid-lactation Holstein cows to determine the effects on feed intake, lactation performance, milk composition and fatty acid profile, nutrient digestibility, blood metabolites, rumen microbial N synthesis, and antioxidant status. The experiment was designed as a 2-period change-over (two 28-d periods) trial with 2 diets including CS diet or SS diet and 12 cows. Total replacement of CS with SS had no significant influence on dry matter intake. Substituting CS with SS had no effect on milk production, feed efficiency, and milk concentrations of fat, protein, lactose, and solids-not-fat, whereas yields of milk fat, protein, and lactose were greater for cows fed the CS diet. Blood parameters including glucose, albumin, cholesterol, triglyceride, total protein, urea N, and fatty acids were not affected by the dietary treatments. Apparent digestibility coefficients of dry matter, organic matter, crude protein, ether extract, neutral detergent fiber, and acid detergent fiber were not significantly influenced by the diets. Replacing CS with SS had no effect on total saturated fatty acids and total monounsaturated fatty acids, whereas total polyunsaturated fatty acid percentage was greater with the SS diet. Proportions of C20:0, C18:3n-3, and C18:3n-6 were affected by feeding SS. Cows fed CS had a greater amount of urinary purine derivatives. Feeding SS had a positive effect on total antioxidant capacity of blood and milk. In conclusion, SS can be fed to lactating Holstein cows as a total replacement for CS without undesirable effects on animal performance, but with positive effects on antioxidant capacity and polyunsaturated fatty acids of milk. This forage can be an excellent choice for dairy farms in areas where cultivation of corn is difficult due to water shortage.  相似文献   

14.
An experiment was conducted to quantify the effects of incremental levels of heat-moisture-treated canola meal (TCM) fed to dairy cows on the relationship between ruminal nutrient digestion and milk production. Experimental diets were fed to 4 multiparous rumen-cannulated Nordic Red cows, averaging (mean ± standard deviation) 681 ± 54.8 kg of body weight, 111 ± 16 d in milk, and 29.1 ± 9.1 kg of milk/d at the start of the study, in a Latin square design with four 21-d periods. The 4 experimental dietary treatments consisted of a basal diet of grass silage and crimped barley, and 3 diets in which the crimped barley was replaced with TCM, giving 3 incremental levels of protein supplementation. Nutrient flow was quantified by the omasal sampling technique using 3 markers (Cr, Yb, and indigestible neutral detergent fiber). Continuous infusion of 15N was used to label bacterial crude protein. Additionally, ruminal sampling and evacuations and measurements of total-tract digestibility were conducted. The experimental diets provided 132, 148, 164, and 180 g of crude protein/kg of dry matter. The increased level of TCM linearly increased dry matter intake from 15.1 to 16.6 kg/d and energy-corrected milk yield from 21.0 to 25.6 kg/d. The increased proportion of TCM when substituting barley with TCM was associated with greater total-tract digestibility of neutral detergent fiber and potentially digestible neutral detergent fiber, which could be explained by increased digestion rate of potentially digestible neutral detergent fiber. Omasal flow of nonammonia N naturally increased with greater dietary TCM inclusion, but the increased intestinal supply of rumen-undegradable protein was partly offset by diminished microbial protein synthesis when feeding more TCM. This was also reflected in a decreased proportion of milk protein from ruminal bacterial protein when TCM supplementation increased.  相似文献   

15.
Twenty Holstein cows were used in an 8-wk randomized block design study to determine the effects of replacing corn silage with ryegrass silage on nutrient intake, apparent digestion, milk yield, and milk composition. The 8-wk trial consisted of a 2-wk preliminary period followed by a 6-wk collection period. Experimental diets were formulated to provide 55.5% of the total dry matter (DM) as forage. Ryegrass silage was substituted for 0, 35, 65, and 100% of DM provided by corn silage. Dietary concentrations of neutral detergent fiber (NDF) and acid detergent fiber (ADF) increased as ryegrass silage replaced corn silage. Intake of DM and crude protein (CP) was similar for all treatments, but intake of NDF and ADF increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of DM declined linearly, whereas digestibility of CP increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of NDF and ADF was highest for the diets in which ryegrass or corn silages provided all of the forage, resulting in a quadratic response. Dry matter intake was not different among treatments. Yield of milk, fat, and protein increased as ryegrass silage replaced corn silage. No differences were observed for body weight change, body condition score, and serum urea nitrogen concentration, but serum glucose concentration increased with increasing dietary proportion of ryegrass silage. These results indicate that substituting ryegrass silage for a portion or all of the corn silage in diets fed to lactating dairy cows can improve yield of milk and components.  相似文献   

16.
The effects of exogenous proteolytic enzyme (EPE) on intake, digestibility, ruminal fermentation, and lactational performance were determined using 8 lactating Holstein cows in a double 4 ×4 Latin square experiment with a 2 ×2 factorial arrangement of treatments. Diets based on barley silage and alfalfa hay as the forage sources were formulated to maintain different forage to concentrate ratios [60:40 vs. 34:66, dry matter (DM) basis]. Four dietary treatments were tested: high forage (HF) without EPE (HF−EPE), HF with EPE (HF+EPE), low forage (LF) without EPE (LF-EPE), and LF with EPE (LF+EPE). The EPE, which contained proteolytic activity but negligible fibrolytic activity, was added to the concentrate portion of the diets after pelleting at a rate of 1.25 mL/kg of DM. Adding EPE to the diet increased total tract digestibilities of DM, organic matter, N, acid detergent fiber, and neutral detergent fiber, with larger increases in digestibility observed for cows fed LF+EPE. Effects of added EPE on in vivo digestibility were consistent with improvements in gas production and degradability of the individual components of the TMR observed in vitro. Ruminal enzymic activities of xylanase and endoglucanase increased with addition of EPE to the diet, which may have accounted for improvements in fiber digestion. However, feeding EPE unexpectedly decreased feed intake of cows, which offset the benefits of improved feed digestibility. Consequently, milk yield of cows fed high or low forage diets decreased with adding EPE. Nevertheless, dairy efficiency, expressed as milk/DM intake, was highest for the LF+EPE diet. Addition of EPE to the diet increased milk fat and milk lactose percentages, but decreased milk protein percentage of cows fed a low forage diet. For cows fed high forage diets, EPE only increased milk lactose percentage. Efficiency of N use for milk production was decreased for both the high and low forage diets when EPE was added to the diet. Mean ruminal pH was lowered when EPE was added a low forage diet, likely due to the increased degradation of forage and concentrate, but there was no effect of EPE on rumen pH when cows were fed high forage diets. Profiles of VFA and microbial yield were not affected by adding EPE to the diets. Adding EPE to a total mixed ration containing alfalfa hay, barley silage, and concentrate improved nutrient digestibility in the total tract, and the response was maximized with a high concentrate diet. However, improvements in digestibility were offset by decreased feed intake, likely due to increased ruminal acidosis.  相似文献   

17.
Sugar supplementation can stimulate rumen microbial growth and possibly fiber digestibility; however, excess ruminal carbohydrate availability relative to rumen-degradable protein (RDP) can promote energy spilling by microbes, decrease rumen pH, or depress fiber digestibility. Both RDP supply and rumen pH might be altered by forage source and monensin. Therefore, the objective of this study was to evaluate interactions of a sugar source (molasses) with monensin and 2 forage sources on rumen fermentation, total tract digestibility, and production and fatty acid composition of milk. Seven ruminally cannulated lactating Holstein cows were used in a 5 × 7 incomplete Latin square design with five 28-d periods. Four corn silage diets consisted of 1) control (C), 2) 2.6% molasses (M), 3) 2.6% molasses plus 0.45% urea (MU), or 4) 2.6% molasses plus 0.45% urea plus monensin sodium (Rumensin, at the intermediate dosage from the label, 16 g/909 kg of dry matter; MUR). Three chopped alfalfa hay diets consisted of 1) control (C), 2) 2.6% molasses (M), or 3) 2.6% molasses plus Rumensin (MR). Urea was added to corn silage diets to provide RDP comparable to alfalfa hay diets with no urea. Corn silage C and M diets were balanced to have 16.2% crude protein; and the remaining diets, 17.2% crude protein. Dry matter intake was not affected by treatment, but there was a trend for lower milk production in alfalfa hay diets compared with corn silage diets. Despite increased total volatile fatty acid and acetate concentrations in the rumen, total tract organic matter digestibility was lower for alfalfa hay-fed cows. Rumensin did not affect volatile fatty acid concentrations but decreased milk fat from 3.22 to 2.72% in corn silage diets but less in alfalfa hay diets. Medium-chain milk fatty acids (% of total fat) were lower for alfalfa hay compared with corn silage diets, and short-chain milk fatty acids tended to decrease when Rumensin was added. In whole rumen contents, concentrations of trans-10, cis-12 C18:2 were increased when cows were fed corn silage diets. Rumensin had no effect on conjugated linoleic acid isomers in either milk or rumen contents but tended to increase the concentration of trans-10 C18:1 in rumen samples. Molasses with urea increased ruminal NH3-N and milk urea N when cows were fed corn silage diets (6.8 vs. 11.3 and 7.6 vs. 12.0 mg/dL for M vs. MU, respectively). Based on ruminal fermentation characteristics and fatty acid isomers in milk, molasses did not appear to promote ruminal acidosis or milk fat depression. However, combinations of Rumensin with corn silage-based diets already containing molasses and with a relatively high nonfiber carbohydrate:forage neutral detergent fiber ratio influenced biohydrogenation characteristics that are indicators of increased risk for milk fat depression.  相似文献   

18.
《Journal of dairy science》2022,105(3):2343-2353
We examined the effects of substituting soybean meal with either yeast protein from Cyberlindnera jadinii or barley in concentrate feeds on feed intake, ruminal fermentation products, milk production, and milk composition in Norwegian Red (NRF) dairy cows. The concentrate feeds were prepared in pellet form as soy-based (SBM; where soybean meal is included as a protein ingredient), yeast-based (YEA; soybean meal replaced with yeast protein), or barley-based (BAR; soybean meal replaced with barley). The SBM contained 7.0% soybean meal on a dry matter (DM) basis. This was replaced with yeast protein and barley in the YEA and BAR concentrate feeds, respectively. A total of 48 early- to mid-lactation [days in milk ± standard deviation (SD): 103 ± 33.5 d] NRF cows in their first to fourth parity and with initial milk yield of 32.6 kg (SD = 7.7) were allocated into 3 groups, using a randomized block design, after feeding a common diet [SBM and good-quality grass silage: crude protein (CP) and neutral detergent fiber (NDF) content of 181 and 532 g/kg of DM, respectively] for 14 d (i.e., covariate period). The groups (n = 16) were then fed one of the dietary treatments (SBM, YEA, or BAR) for a period of 56 d (i.e., experimental period). The concentrate feeds were offered in split portions from 3 automatic feeders using electronic identification, with ad libitum access to the same grass silage. Dietary treatments had no effect on daily silage intake, total DM intake, or total NDF intake. Dietary CP intake was lower and starch intake was higher in the BAR group compared with the other groups. Ruminal fluid pH, short-chain volatile fatty acid (VFA) concentrations, acetate-to-propionate ratio, and non-glucogenic to glucogenic VFA ratio were not affected by dietary treatments. No effects of the dietary treatments were observed on body weight change, body condition score change, milk yield, energy-corrected milk yield, milk lactose and fat percentages, or their yields. In conclusion, yeast protein can substitute conventional soybean meal in dairy cow diets without adverse effect on milk production and milk composition, given free access to good-quality grass silage.  相似文献   

19.
Seventy-five lactating cows were in three experiments to determine the effect of dietary fiber content on ration intake, milk and milk fat production, ration digestibility, nitrogen utilization, and ruminal volatile fatty acids. With corn or barley silage as the source of forage, four treatment groups consumed rations averaging 11.8, 14.5, 17.5, and 20.6% crude fiber and 14.3, 17.5, 20.0, and 23.9% acid detergent fiber dry basis. Fiber intake was controlled by the amount and fiber content of concentrate offered or by silages with different grain content. With corn silage, dry matter intake was not altered by dietary fiber, but dry matter intake was lower when additional fiber was fed with barlev silage. Linear regressions best described effects of dietary fiber on milk production and milk fat content. Milk production declined .39 and .36 kg and milk fat test increased .072 and .067% for each percentage increase in crude and acid detergent fiber. Ration digestibility, determined by lignin ratio, was less for barley silage than corn silage. Narrowing acetate: propionate ratios were evident when dietary fiber was lowered. From these experiments with silage based rations, either crude or acid-detergent fiber content of forage adequately describes feeds to serve as a basis for practically balancing rations for lactating cows.  相似文献   

20.
The objective of the study was to investigate the effects of dietary forage and distillers dried grains with solubles (DDGS) concentration on the performance of lactating dairy cows. Twelve Holstein cows were blocked by parity and milk production and assigned to replicated 4 × 4 Latin squares with a 2 × 2 factorial arrangement of treatments. Diets were formulated to contain low forage [LF; 17% forage neutral detergent fiber (NDF)] or high forage (HF; 24.5% forage NDF) and DDGS at 0 or 18% of diet dry matter. The forage portion of the diet consisted of 80% corn silage and 20% alfalfa hay (dry matter basis). A portion of the ground corn and all of the expeller soybean meal and extruded soybeans from 0% DDGS diets were replaced with DDGS to formulate 18% DDGS diets. Overall, we found no interactions of forage × DDGS concentrations for any of the production measures. We observed no effect of diet on dry matter intake. Milk yield was greater when cows were fed LF diets compared with HF diets (43.3 vs. 41.5 kg/d). Milk fat concentration (3.03 vs. 3.38%) was lower for cows fed LF diets compared with HF diets, whereas protein concentration (3.11 vs. 2.98%) and yield (1.34 vs. 1.24 kg/d) were greater for cows fed LF diets compared with HF diets. Yields of fat, total solids, energy-corrected milk, and feed efficiency were not affected by diets. Cows partitioned equally for milk, maintenance, and body reserves. Replacing starch from ground corn and protein from soybean feeds with DDGS at either 17 or 24.5% of forage NDF concentration in the diet was cost-effective and did not affect the production performance of lactating dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号