首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An α‐l ‐rhamnosidase producing fungal strain has been isolated from decaying lemon fruit. The fungal strain has been identified as Aspergillus flavus. The α‐l ‐rhamnosidase has been purified from the culture filtrate of the fungal strain using ultra filtration and cation exchange chromatography on carboxy methyl (CM) cellulose. The molecular mass of the purified enzyme determined by SDS–PAGE analysis was 41 kDa. The Km values of the enzyme using p‐nitrophenyl‐α‐l ‐rhamnopyranoside and naringin as the substrates were 1.89 and 1.6 mm respectively. The pH and temperature optima of the enzyme were 11.0 and 50 °C respectively. The effects of various chemical species present in grape fruit juice and wine on the activity of the enzyme have been determined.  相似文献   

3.
4.
Bio‐availability of different α‐tocopherol forms in livestock animals is measured by the increase in plasma or tissue concentrations of α‐tocopherol after oral administration. It is generally accepted that RRR‐α‐tocopheryl acetate (natural source vitamin E derived from vegetable oil) has a higher bio‐availability compared to allrac‐α‐tocopheryl acetate (synthetic vitamin E, i.e. α‐tocopherol produced by chemical synthesis). However, different bio‐availability ratios have been reported in the literature. The major reason for conflicting results in literature studies was the inability to separate the proportion of α‐tocopherol originating from test materials, from the proportion of α‐tocopherol originating from basal dietary ingredients and pre‐feeding. This causes significant variability. For bio‐availability determination, a baseline or control treatment is essential. The estimation of bio‐availability without correction for basal vitamin E status will lead to incorrect interpretation of the results. When using proper methodologies, it is possible to correct for the impact of α‐tocopherol intake from basal ingredients and α‐tocopherol originating from pre‐feeding, therefore yielding results reflecting the true relative bio‐availability of different α‐tocopherol substances. When reviewing literature data a critical evaluation of the method used in determination of relative bio‐availability is recommended. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
6.
In order to study the human intestinal transit of flavan‐3‐ol C‐glycosides, several C‐glycosyl derivatives were prepared by non‐enzymatic reaction of (+)‐catechin with α‐D ‐glucose, α‐D ‐galactose and α‐D ‐rhamnose, respectively. In contrast to literature data, we propose that the reaction mechanism proceeds in analogy to the rearrangement of flavan‐3‐ols during epimerization under alkaline conditions. Four of the 12 synthesized flavan‐3‐ol C‐glycosides were incubated under aerobic conditions at 37°C using saliva (2 min) and simulated gastric juice (3 h). To simulate human intestine, the C‐glycosides were also incubated under anaerobic conditions at 37°C both in human ileostomy fluid (10 h) and colostomy fluid (24 h), respectively. The flavan‐3‐ol C‐glycosides under study, i.e. (+)‐epicatechin 8‐C‐β‐D ‐glucopyranoside (1a), (+)‐epicatechin 6‐C‐β‐D ‐glucopyranoside (1d), (+)‐catechin 6‐C‐β‐D ‐galactopyranoside (2b), (+)‐catechin 6‐C‐β‐D ‐rhamnopyranoside (3b) were analyzed in the incubation samples by HPLC‐DAD and HPLC‐DAD‐MS/MS. They were found to be stable in the course of incubation in saliva, simulated gastric juice and ileostomy fluid and underwent degradation in colostomy fluid. While the 6‐C‐β‐D ‐glucopyranoside 1d was completely metabolized between 2 and 4 h, decomposition of the 6‐C‐β‐D ‐galactopyranoside 2b reached only 16±2% within 4 h of incubation. Linear degradation rates of 1d and 2b in colostomy fluid differed significantly. As microbial metabolism of flavan‐3‐ols is known not to be influenced by the stereochemistry of the aglycon, varying degradation rates are ascribed to the effect of the sugar moiety. Based on these results we assume that flavan‐3‐ol C‐glycosides pass through the upper gastrointestinal tract (oral cavity, stomach and small intestine) unmodified and are then metabolized by the colonic microflora.  相似文献   

7.
An extracellular α‐l ‐rhamnosidase from Penicillium citrinum MTCC‐3565 has purified to homogeneity from its culture filtrate using ethanol precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The purified enzyme gave a single protein band corresponding to molecular mass of 45.0 kDa in SDS‐PAGE analysis showing the purity of the enzyme preparation. The native PAGE analysis showed the monomeric nature of the purified enzyme. Using p‐nitrophenyl α‐l ‐rhamnopyranoside as substrate, Km and Vmax values of the enzyme were 0.30 mm and 27.0 μm min mg?1, respectively. The kcat value was 20.1 s giving kcat/Km value of 67.0 mm s?1 for the same substrate. The pH and temperature optima of the enzyme were 8.5 and 50 °C, respectively. The activation energy for the thermal denaturation of the enzyme was 29.9 KJ mol?1. The α‐l ‐rhamnosidase was able to hydrolyse naringin, rutin and hesperidin and liberated l ‐rhamnose, indicating that the purified enzyme can be used for the preparation of α‐l ‐rhamnose and pharmaceutically important compounds by derhamnosylation of natural glycosides containing terminal α‐l ‐rhamnose. The α‐l ‐rhamnosidase was active at the level of ethanol concentration present in wine, indicating that it can be used for improving wine aroma.  相似文献   

8.
Sesame lignans have antioxidative and anti‐inflammatory properties. We focused on the effects of the lignans sesamin and sesamol on the expression of endothelial‐leukocyte adhesion molecules in tumor necrosis factor‐α (TNF‐α)‐treated human aortic endothelial cells (HAECs). When HAECs were pretreated with sesamin (10 or 100 μM), the TNF‐α‐induced expression of intercellular cell adhesion molecule‐1 (ICAM‐1) was significantly reduced (35 or 70% decrease, respectively) by Western blotting. Sesamol was less effective at inhibiting ICAM‐1 expression (30% decrease at 100 μM). Sesamin and sesamol reduced the marked TNF‐α‐induced increase in human antigen R (HuR) translocation and the interaction between HuR and the 3'UTR of ICAM‐1 mRNA. Both significantly reduced the binding of monocytes to TNF‐α‐stimulated HAECs. Sesamin significantly attenuated TNF‐α‐induced ICAM‐1 expression and cell adhesion by downregulation of extracellular signal‐regulated kinase 1/2 and p38. Furthermore, in vivo, sesamin attenuated intimal thickening and ICAM‐1 expression seen in aortas of apolipoprotein‐E‐deficient mice. Taken together, these data suggest that sesamin inhibits TNF‐α‐induced extracellular signal‐regulated kinase/p38 phosphorylation, nuclear translocation of NF‐κB p65, cytoplasmic translocalization of HuR and thereby suppresses ICAM‐1 expression, resulting in reduced adhesion of leukocytes. These results also suggest that sesamin may prevent the development of atherosclerosis and inflammatory responses.  相似文献   

9.
10.
The extracellular α‐l ‐rhamnosidase has been purified by growing a new fungal strain Aspergillus awamori MTCC‐2879 in the liquid culture growth medium containing orange peel. The purification procedure involved ultrafiltration using PM‐10 membrane and anion‐exchange chromatography on diethyl amino ethyl cellulose. The purified enzyme gave single protein band in SDS‐PAGE analysis corresponding to molecular mass 75.0 kDa. The native PAGE analysis of the purified enzyme also gave a single protein band, confirming the purity of the enzyme. The Km and Vmax values of the enzyme for p‐nitrophenyl‐α‐l ‐rhamnopyranoside were 0.62 mm and 27.06 μmole min?1 mg?1, respectively, yielding kcat and kcat/km values 39.90 s?1 and 54.70 mm ?1 s?1, respectively. The enzyme had an optimum pH of 7.0 and optimum temperature of 60 °C. The activation energy for the thermal denaturation of the enzyme was 35.65 kJ?1 mol?1 K?1. The purified enzyme can be used for specifically cleaving terminal α‐l ‐rhamnose from the natural glycosides, thereby contributing to the preparation of pharmaceutically important compounds like prunin and l ‐rhamnose.  相似文献   

11.
Age‐induced decomposition of iso‐α‐acids, the main bittering principles of beer, determines the consistency of the beer bitter taste. In this study, the profiles of iso‐α‐acids in selected high‐quality top‐fermented and lager beers were monitored by quantitative high‐performance liquid chromatography at various time intervals during ageing. The degradation of the iso‐α‐acids as a function of time is represented by the ratio, in percentage, of the sum of the concentrations of trans‐isocohumulone and trans‐isohumulone to the sum of the concentrations of cis‐isocohumulone and cis‐isohumulone. This parameter is relevant with respect to the evaluation of bitterness deterioration in aged beers. Trans‐iso‐α‐acids having a shelf half‐life of less than one year proved to be significantly less stable than cis‐iso‐α‐acids, but it appears feasible to counteract degradation if a suitable beer matrix is available. The fate of the trans‐iso‐α‐acids in particular adversely affects beer bitterness consistency. In addition to using hop products containing low amounts of trans‐iso‐α‐acids, brewers may profit of the remarkable stability of tetrahydroiso‐α‐acids, even on prolonged storage, for the production of consistently bitter beers.  相似文献   

12.
Tea polyphenol (TP) inhibits digestive enzymes and reduces food digestibility. To explore the interaction between TP with digestive enzymes, bindings of ‐epigallocatechin‐3‐gallate (EGCG) to trypsin and α‐chymotrypsin were studied in detail using fluorescence, resonance light‐scattering, circular dichroism, fourier transform infrared spectroscopy methods and protein‐ligand docking. The binding parameters were calculated according to Stern–Volmer equation, and the thermodynamic parameters were determined by the van't Hoff equation. The results indicated that EGCG was capable of binding trypsin and α‐chymotrypsin with high affinity, resulting in a change of native conformation of these enzymes. EGCG had a greater influence on the structure of α‐chymotrypsin than trypsin. This study can be used to explain the binding interaction mechanism between TP and digestive enzymes.  相似文献   

13.
目的:研究酸枣叶缩合单宁的结构特征及其对酪氨酸酶的效应和黑色素生成的抑制机制。方法:利用Sephadex LH-20凝胶柱色谱技术分离制备酸枣叶缩合单宁纯化物,采用硫醇降解结合高效液相色谱-电喷雾电离质谱(Thiolysis-HPLC-ESI-MS)解析酸枣叶缩合单宁的结构单元组成,运用酶动力学、紫外光谱、荧光猝灭等方法系统研究酸枣叶缩合单宁对酪氨酸酶的抑制作用机理,应用CCK-8法、多巴氧化法、NaOH裂解法和实时荧光定量PCR检测酸枣叶缩合单宁对小鼠黑色素瘤细胞(B16F10)的增殖、酪氨酸酶活性、黑色素合成及其相关基因表达水平的影响。结果:构成酸枣叶缩合单宁的主要结构单元是(表)儿茶素和(表)棓儿茶素;酸枣叶缩合单宁具有较强的酪氨酸酶单酚酶和二酚酶抑制活性,是二酚酶可逆的混合型抑制剂;酸枣叶缩合单宁可有效抑制B16F10细胞的增殖、酪氨酸酶活性、黑色素生成量以及酪氨酸酶(TYR)、酪氨酸酶相关蛋白-1(TRP-1)、小眼畸形相关转录因子(MITF)等基因的表达。结论:通过在酶水平和细胞水平的综合分析,阐明酸枣叶缩合单宁对B16F10细胞黑色素合成的分子抑制机制,为后期酸枣叶缩合单宁开发为新的美白化妆品添加剂和果蔬保鲜剂提供理论依据。  相似文献   

14.
An α‐l ‐rhamnosidase secreted by Penicillium citrinum MTCC‐8897 has been purified to homogeneity from the culture filtrate of the fungal strain using ammonium sulphate precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The sodium dodecyl sulphate/polyacrylamide gel electrophoresis analysis of the purified enzyme gave a single protein band corresponding to the molecular mass 51.0 kDa. The native polyacrylamide gel electrophoresis also gave a single protein band confirming the enzyme purity. The Km and Vmax values of the enzyme for p‐nitrophenyl α‐l ‐rhamnopyranoside were 0.36 mm and 22.54 μmole min?1 mg?1, respectively, and kcat value was 17.1 s?1 giving kcat/Km value of 4.75 × 104 m ?1 s?1. The pH and temperature optima of the enzyme were 7.0 and 60 °C, respectively. The purified enzyme liberated l ‐rhamnose from naringin, rutin, hesperidin and wine, indicating that it has biotechnological application potential for the preparation of l ‐rhamnose and other pharmaceutically important compounds from natural glycosides containing terminal α‐l ‐rhamnose and also in the enhancement of wine aroma.  相似文献   

15.
Two DNA fragments encoding the starch‐binding domain (SBD) of Bacillus sp. strain TS‐23 α‐amylase were prepared by polymerase chain reaction and cloned into the Escherichia coli expression vector, pQE‐30, to generate pQE‐N428/C607 and pQE‐N465/ C607. In isopropyl‐β‐D ‐thiogalactopyranoside (IPTG)‐induced E. coli strain M15 harboring these expression plasmids, the recombinant SBDs (N428/C607 and N465/C607) could comprise up to 20% of the total soluble proteins. The His‐tag/SBD fusion proteins were purified to homogeneity with a His‐bind affinity column and had molecular masses of approximately 22.6 and 16.5 kDa, respectively. Starch‐binding assays revealed that about 7.1 and 8.3 μg, respectively, of N428/C607 and N465/C607 were bound by 1 mg of raw corn starch, indicating that the SBD of Bacillus sp. strain TS‐23 α‐amylase retain sufficient function in the absence of a catalytic center.  相似文献   

16.
An obvious sign of ageing is hair greying, or the loss of pigment production and deposition within the hair shafts. Numerous mechanisms, acting at different levels and follicular locations, contribute to hair greying, ranging from melanocyte stem cells defects to follicular melanocyte death. One key issue that is in common to these processes is oxidative damage. At the hair follicle stem cells niche, oxidative stress, accelerated by B‐cell lymphoma 2 gene (BCL‐2) depletion, leads to selective apoptosis and diminution of melanocyte stem cells, reducing the repopulation of newly formed anagen follicles. Melanotic bulbar melanocytes express high levels of BCL‐2 to enable survival from melanogenesis‐ and ultraviolet A (UVA)‐induced reactive oxygen species (ROS) attacks. With ageing, the bulbar melanocyte expression of anti‐oxidant proteins such as BCL‐2, and possibly TRP‐2, is reduced, and the dedicated enzymatic anti‐oxidant defence system throughout the follicle weakens, resulting in enhanced oxidative stress. A marked reduction in catalase expression and activity results in millimolar accumulation of hydrogen peroxide, contributing to bulbar melanocyte malfunction and death. Interestingly, amelanotic melanocytes at the outer root sheath (ORS) are somewhat less affected by these processes and survive for longer time even within the white, ageing hair follicles. Better understanding of the overtime susceptibility of melanocytes to oxidative stress at the different follicular locations might yield clues to possible therapies for the prevention and reversal of hair greying.  相似文献   

17.
The effects of wild type and UV-irradiated lemon balm (Melissa officinalis) ethanolic extracts (MOE and UMOE) on melanogenesis in vitro were examined. UMOE showed potent antioxidant activity and significantly inhibited the mushroom and melanocyte tyrosinase activity, and lowered cellular melanin content by 49% at 200 μg/mL in B16-F1 melanocytes. The key gene and protein expression of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 were reduced (−73% for TRP-1 protein at 200 μg/mL UMOE, p<0.05). MOE showed similar results to a slightly lesser degree. We found that myo-inositol, a major compound in lemon balm extracts, significantly reduced cellular melanin synthesis and its effect was greater than arbutin at 1 mM. These suggest that both MOE and UMOE have anti-melanogenic role by both direct inhibition of tyrosinase and down-regulation of gene expressions in melanogenesis. UV-irradiation slightly improved the anti-melanogenic activities. UMOE may be useful as natural anti-melanogenic biomaterials for functional foods and cosmetics.  相似文献   

18.
BACKGROUND: Tyrosinase plays a key role in hyperpigmentaion and enzymatic browning. The present study was aimed at investigating the inhibitory effects of water and 70% aqueous ethanol extracts of Stichopus japonicus, a sea cucumber long consumed as a tonic food and traditional medicine, on the diphenolase activity of tyrosinase. RESULTS: In the tyrosinase inhibition study, high‐performance liquid chromatography completely separated L ‐3,4‐dihydroxyphenylalanine and dopachrome from other compounds present in the extracts, and provided more reliable results than the commonly used spectrophotometry. The ethanol extract (IC50 = 0.49–0.61 mg mL?1) showed higher inhibitory activity than the water extract (IC50 = 1.80–1.99 mg mL?1). Enzyme inhibition by the extracts was reversible and of mixed type. For both extracts, the dissociation constants for binding to free enzyme were significantly smaller than those for binding to enzyme–substrate complex. Ethyl‐α‐D ‐glucopyranoside (IC50 = 0.19 mg mL?1), isolated for the first time from sea cucumber, and adenosine (IC50 = 0.13 mg mL?1), were identified as key tyrosinase inhibitors. CONCLUSION: The sea cucumber extracts were demonstrated to possess considerable inhibitory potency against the diphenolase activity of tyrosinase, suggesting that the sea cucumber may be a good source of safe and effective tyrosinase inhibitors. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号