首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
分析了高湿挤压操作条件对含豆渣组织蛋白中膳食纤维的影响,为评价高湿挤压生产高膳食纤维组织蛋白产品营养特性提供理论基础。以豆渣为主要原料,采用双螺杆挤压机在豆渣含量(0%~60%)、物料水分(50%~60%)、挤压温度(130℃~150℃)条件下挤压制备组织蛋白。应用酶-重量法测定组织蛋白中总膳食纤维、不溶性膳食纤维和可溶性膳食纤维含量,比较挤压前后产品膳食纤维含量变化,分析挤压条件对可溶性膳食纤维含量的影响。结果表明,豆渣可显著增加组织蛋白产品膳食纤维含量(P0.05);物料水分增加不利于不溶性膳食纤维降解,挤压温度升高促进不溶性膳食纤维降解。含豆渣组织蛋白膳食纤维丰富,高湿挤压可在一定程度上提高产品中可溶性膳食纤维含量。  相似文献   

2.
豆渣水不溶性膳食纤维提取工艺研究   总被引:3,自引:0,他引:3  
本文以豆渣为原料,研究了酸碱处理法提取水不溶性膳食纤维的最佳提取工艺条件.研究结果表明,制取水不溶性豆渣膳食纤维的最佳酸碱处理条件为,碱用量5 mL/g,碱处理温度40 ℃,碱处理时间80min;酸用量4 mL/g,酸处理时间80min.产品中膳食纤维含量达78.3%.  相似文献   

3.
研究以豆渣为原料制备大豆膳食纤维粉的新工艺.采用湿法超微粉碎-挤压-喷雾干燥技术处理鲜豆渣,测定产品中膳食纤维含量和物化性能的多项指标.经过湿法超微粉碎-挤压-喷雾干燥工艺制备的大豆膳食纤维粉的可溶性膳食纤维(SDF)含量达到9.02%,比对照增加108.8%;可溶性膳食纤维(SDF)含量与总膳食纤维(TDF)含量比值(%)达到13.56,膳食纤维构成得到改善;溶解度、可溶性物含量、持水力、膨胀力、黏度分别为2.27 mg/mL、11.21%、12.46 g/g、5.71 mL/g、3.78 mPa·s,分别比对照增加101%、94.62%、47.46%、81.27%、65.79%;粒度和堆密度分别为2.69 μm~8.08 μm和0.24 g/mL,分别比对照减少85.79%~90%和8.41%.试验结果提示在加工过程中膳食纤维已受到一定程度的改性,这对提高产品的质量是重要的.  相似文献   

4.
目的 为探究不同处理方式对豆渣中可溶性膳食纤维得率及豆渣理化特性的影响,提高其综合利用价值。方法 以豆渣为原料,可溶性膳食纤维得率为指标,通过单因素试验确定不同处理方式(挤压、微波、挤压-微波联用、微波-挤压联用)的最佳工艺条件,并考察不同处理方式对豆渣结构和理化特性的影响。结果 最佳挤压条件为物料水分50%、机筒温度150 ℃、螺杆转速220 r/min,最佳微波条件为微波功率500 W、料液比为1:15、微波时间为6 min,在最佳的挤压、微波、挤压-微波和微波-挤压处理条件下,豆渣中可溶性膳食纤维得率分别为7.48%、6.85%、8.22%和7.71%;通过红外光谱发现豆渣经过处理后分子结构中的氢键被破坏;四种处理方式均未改变豆渣的晶体结构;挤压和微波处理都会使豆渣发生团聚现象;经过处理后豆渣的热稳定性和持水性下降、持油性升高,联用处理会降低豆渣的溶胀性。结论 联用处理改变豆渣的结构进而影响其性质及可溶性膳食纤维含量,研究结果为提升豆渣在食品领域的应用提供参考。  相似文献   

5.
双螺杆挤压对小麦膳食纤维改性的研究   总被引:1,自引:0,他引:1  
以小麦膳食纤维为原料,采用双螺杆挤压技术,研究挤压条件对小麦膳食纤维的改性效果。结果表明:挤压的最佳工艺条件为加水量15%,出料口温度140℃,螺杆转速100 r/min。在此条件下,样品的持水力和膨胀力分别为4.18 g/g、3.45 mL/g,与挤压前相比,分别提高0.7 g/g、1.25 mL/g。挤压后基本成分变化为:水分和可溶性膳食纤维含量升高,淀粉、蛋白质和不溶性膳食纤维含量有所降低,其它成分含量基本未发生变化。显微观察,处理后样品较处理前样品组织结构更加疏松,粒度更加均匀。  相似文献   

6.
为明析离子液体对豆渣膳食纤维成分及物化特性的影响,从而拓宽豆渣在食品中的应用,以富含水不溶性膳食纤维(IDF)的鲜豆渣为原料,研究不同种类离子液体处理后膳食纤维成分变化和物化特性。结果表明:离子液体处理可以显著提高豆渣中水溶性膳食纤维(SDF)含量,其提高效果随着离子液体阳离子基团的延长而减弱,含乙酸根的离子液体的提高效果优于含氯离子的离子液体。1-乙基-3-甲基咪唑乙酸盐的效果最好,可将豆渣中SDF含量从最初5.97×10-2 g/g提高到0.17 g/g,SDF/IDF比值从0.17提高到0.69。离子液体处理改变了豆渣中SDF和IDF的单糖组成,豆渣的微观结构因溶胀而变形,结晶结构遭到破坏。离子液体处理后,豆渣膳食纤维的持水力增加10%,持油力增加16%。离子液体可作为提高豆渣中SDF含量,改善豆渣膳食纤维水合性质的有效途径。  相似文献   

7.
田成  莫开菊  汪兴平 《食品科学》2010,31(14):148-152
为研究磷酸盐改性水不溶性豆渣膳食纤维的工艺条件及膳食纤维结构,以持水性作为特征性考察指标,通过单因素试验、正交试验优化其改性的工艺条件,通过X 射线衍射及电镜观察膳食纤维的结构。结果表明:水不溶性豆渣膳食纤维改性的最佳工艺参数为磷酸氢二钠溶液质量浓度0.1g/100mL、料液比1:60(g/mL)、处理时间1h、处理温度50℃,此条件下的膳食纤维持水性达11.95g/g;磷酸盐改性水不溶性豆渣膳食纤维的结构得到部分改善,表面略有褶皱,结构疏松,带有明显的片状结构,颗粒的表面出现蜂窝状结构,且分布均匀,改性后的水不溶性豆渣膳食纤维在34.76°出现较明显的衍射强度峰,其结晶度为30.57%。  相似文献   

8.
鹰嘴豆豆渣是鹰嘴豆加工后的下脚料,大部分被用作饲料、肥料或被废弃,造成严重的资源浪费。鹰嘴豆豆渣中含有较多的水不溶性膳食纤维,故采用酸、碱结合的化学法对鹰嘴豆豆渣进行处理,通过正交试验设计得到鹰嘴豆水不溶性膳食纤维的最佳提取工艺:碱用量5 mL/g,碱处理时间70 min,碱处理温度80℃,酸用量2 mL/g,酸处理时间80 min。研究鹰嘴豆膳食纤维的添加对午餐肉中亚硝酸盐含量的降低作用。结果表明:添加了1.0%鹰嘴豆水不溶性膳食纤维的午餐肉中亚硝酸盐含量显著降低。  相似文献   

9.
为促进芸豆渣的综合利用,对豆渣进行发酵改性,以改善其基本结构并提高其物化特性。利用复合菌系进行发酵,响应面优化制备工艺,分离可溶性膳食纤维和不溶性膳食纤维,对发酵前后的膳食纤维进行表观结构及物化特性的分析。发酵可溶性膳食纤维含量为17.47%,提高了11.84%,发酵后膳食纤维含量提高了2.81%。发酵后不溶性膳食纤维的持水力、持油力及膨胀力分别提高了2倍、6倍、1.9倍,吸附性及离子交换能力皆显著优于未处理的不溶性膳食纤维,发酵后可溶性膳食纤维的抗氧化能力也显著提高。发酵后的不溶性膳食纤维的微观结构褶皱更明显,发酵后的可溶性膳食纤维的颗粒明显增多变小且结构呈紧簇蜂窝状,红外光谱图也表明豆渣膳食纤维具有膳食纤维特有组分。发酵后的豆渣膳食纤维微观结构及物化特性皆有较明显地改善,其具备作为优质膳食纤维地潜能。  相似文献   

10.
研究脱蛋白方法结合超微粉碎处理豆渣对其化学组成和功能特性的影响,当豆渣样品进行酶或碱处理时,它的总膳食纤维(TDF),不溶性膳食纤维(IDF)的质量分数分别增加了18.6-32.9%,22.6-34.4%,并且它们的功能特性(持水力,膨胀力和持油力)显著(p < 0.05)增加,但可溶性膳食纤维(SDF)质量分数与处理前豆渣没有显着差异。经超微粉随后,随着豆渣膳食纤维粒径减小,豆渣膳食纤维中可溶性膳食纤维质量分数提高了170% 以上,持水力和膨胀力显着下降(p < 0.05),持油力先下降后上升。结果表明,应用碱性蛋白酶和超微粉碎进行前处理,得到的豆渣中TDF和SDF的含量最高,这可能是在食品中加工高质量膳食纤维的潜在方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号