首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the recent changes in yeast taxonomy, a novel wine-related species Candida zemplinina as well as a “reinstated” species Saccharomyces uvarum have been accepted in addition to Candida stellata, Saccharomyces bayanus and Saccharomyces cerevisiae, and the use of the different taxon names has been inconsistent in the literature of food microbiology. The aim of this work is to make an exact comparison of genetically identified strains of these species, under oenological conditions. Dynamics and some important products of alcoholic fermentation were investigated in laboratory fermentations. The results show that C. zemplinina and C. stellata are similar in their strong fructophilic character. C. stellata produces more glycerol and fare more ethanol, which is comparable with that produced by S. uvarum. Strains of the latter species differed from S. cerevisiae mainly in low acetic acid production and lower ethanol yield. Revision of the oenological traits of these yeasts provides new data for consideration in the control of fermentation, with special regard to botrytized sweet wines, where they are frequently found in mixed population.  相似文献   

2.
Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16°Brix with a sucrose solution, and batch fermentations were performed at 22 °C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Yp/s), biomass (Yx/s), glycerol (Yg/s) and acetic acid (Yac/s), the volumetric productivity of ethanol (Qp), the biomass productivity (Px), and the fermentation efficiency (Ef) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the Ef, Yp/s, Yg/s, and Yx/s parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 μg/L), CAT-1 (80,317.01 μg/L), VR-1 (67,573.99 μg/L) and S. bayanus CBS 1505 (71,660.32 μg/L). The highest concentrations of ethyl esters were 454.33 μg/L, 440.33 μg/L and 438 μg/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 μg/L) and higher alcohols (83,996.33 μg/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters.  相似文献   

3.
Discovery, characterisation and use of novel yeast strains for winemaking is increasingly regarded as a way for improving quality and to provide variation, including subtle characteristic differences in fine wines. The objective of this work was to evaluate the use of a native apiculate strain, selected from grapes, Hanseniaspora vineae (H. vineae) 02/5A. Fermentations were done in triplicate, working with 225 L oak barrels, using a Chardonnay grape must. Three yeast fermentation strategies were compared: conventional inoculation with a commercial Saccharomyces cerevisiae strain, ALG 804, sequential inoculation with H. vineae and then strain ALG 804 and spontaneous fermentation. Yeast strain identification was performed during fermentation, in which the apiculate strain was found to be active, until 9% of alcohol in volume, for the co-fermentation and the spontaneous fermentation was completed by three native S. cerevisiae strains. Basic winemaking parameters and some key chemical analysis, such as concentration of glycerol, biogenic amines, organic acids, and aroma compounds were analysed. Sensory analysis was done using a trained panel and further evaluated with professional winemakers. Sequential inoculation with H. vineae followed by S. cerevisiae resulted in relatively dry wines, with increased aroma and flavour diversity compared with wines resulting from inoculation with S. cerevisiae alone. Wines produced from sequential inoculations were considered, by a winemaker’s panel, to have an increased palate length and body. Characteristics of wines derived from sequential inoculation could be explained due to significant increases in glycerol and acetyl and ethyl ester flavour compounds and relative decreases in alcohols and fatty acids. Aroma sensory analysis of wine character and flavour, attributed to winemaking using H. vineae, indicated a significant increase in fruit intensity described as banana, pear, apple, citric fruits and guava. GC analysis of the relative accumulation of 23 compounds to significantly different concentrations for the three fermentation strategies is discussed in relation to aroma compound composition.  相似文献   

4.
Twenty-six wild Oenococcus oeni strains were investigated for their ability to form biogenic amines during malolactic fermentation in synthetic medium and in wine. Eight strains produced histamine and tyramine in screening broth at concentrations of 2.6-5.6 mg/L and 1.2-5.3 mg/L, respectively. Based on their ability to form biogenic amines, five strains were selected to inoculate three wines obtained by the fermentation of three different Saccharomyces cerevisiae strains (A, B, and C). All bacterial strains could perform malolactic fermentation for short periods in wine C, whereas only one strain performed complete malolactic fermentation in wines A and B. Two O. oeni strains (261 and 351) produced histamine and tyramine in wine C. Time-course analysis of these compounds showed that for both strains, histamine and tyramine production began at day 10 and finished on day 25, after the end of malolactic fermentation. These results indicate that the ability of O. oeni to produce histamine and tyramine is dependent on the bacterial strain and on the wine composition, which in turn depends on the yeast strain used for fermentation, and on the length of bacteria-yeast contact time after the completion of malolactic fermentation.  相似文献   

5.
Non-Saccharomyces yeasts are metabolically active during spontaneous and inoculated must fermentations, and by producing a plethora of by-products, they can contribute to the definition of the wine aroma. Thus, use of Saccharomyces and non-Saccharomyces yeasts as mixed starter cultures for inoculation of wine fermentations is of increasing interest for quality enhancement and improved complexity of wines. We initially characterized 34 non-Saccharomyces yeasts of the genera Candida, Lachancea (Kluyveromyces), Metschnikowia and Torulaspora, and evaluated their enological potential. This confirmed that non-Saccharomyces yeasts from wine-related environments represent a rich sink of unexplored biodiversity for the winemaking industry. From these, we selected four non-Saccharomyces yeasts to combine with starter cultures of Saccharomyces cerevisiae in mixed fermentation trials. The kinetics of growth and fermentation, and the analytical profiles of the wines produced indicate that these non-Saccharomyces strains can be used with S. cerevisiae starter cultures to increase polysaccharide, glycerol and volatile compound production, to reduce volatile acidity, and to increase or reduce the total acidity of the final wines, depending on yeast species and inoculum ratio used. The overall effects of the non-Saccharomyces yeasts on fermentation and wine quality were strictly dependent on the Saccharomyces/non-Saccharomyces inoculum ratio that mimicked the differences of fermentation conditions (natural or simultaneous inoculated fermentation).  相似文献   

6.
The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics.  相似文献   

7.
Brettanomyces bruxellensis is one of the most damaging species for wine quality, and tools for controlling its growth are limited. In this study, thirty-nine strains belonging to Saccharomyces cerevisiae and B. bruxellensis have been isolated from wineries, identified and then tested against a panel of thirty-nine killer yeasts. Here, for the first time, the killer activity of Ustilago maydis is proven to be effective against B. bruxellensis. Mixed cultures in winemaking conditions show that U. maydis CYC 1410 has the ability to inhibit B. bruxellensis, while S. cerevisiae is fully resistant to its killer activity, indicating that it could be used in wine fermentation to avoid the development of B. bruxellensis without undesirable effects on the fermentative yeast. The characterization of the dsRNAs isolated and purified from U. maydis CYC 1410 indicated that this strain produces a KP6-related toxin. Killer toxin extracts were active against B. bruxellensis at pH values between 3.0 and 4.5 and temperatures comprised between 15 °C and 25 °C, confirming their biocontrol activity in winemaking and wine aging conditions. Furthermore, small amounts (100 AU/ml) of killer toxin extracts from U. maydis significantly reduced the amount of 4-ethylphenol produced by B. bruxellensis, indicating that in addition to the growth inhibition observed for high killer toxin concentrations (ranging from 400 to 2000 AU/ml), small amounts of the toxin are able to reduce the production of volatile phenols responsible for the aroma defects in wines caused by B. bruxellensis.  相似文献   

8.
The influence of alcoholic and malolactic fermentations on the levels of amines in Merlot wines was investigated. Saccharomyces bayanus, S. cerevisiae, Lactobacillus plantarum, Oenococcus oeni (DSM 7008 and 12923) and spontaneous fermentations were used. Four of the 10 amines investigated were detected: spermidine, serotonin, putrescine and cadaverine. When considering the factors independently, the malolactic bacteria significantly affected the levels of serotonin and total amines, whereas the fermentation yeasts significantly affected the levels of spermidine (two way Kruskal–Wallis, p ? 0.05). Spermidine levels were significantly higher in wines produced with S. cerevisiae. Significantly higher serotonin levels were found in wines made with L. plantarum. Putrescine and cadaverine were not detected in wines produced by spontaneous alcoholic fermentation or by L. plantarum. There were significant differences in alcohol content, total and volatile acidity, sulphite levels and taste quality among wines (Tukey test, p ? 0.05).  相似文献   

9.
The effect of simultaneous or sequential inoculation of Hanseniaspora vineae CECT 1471 and Saccharomyces cerevisiae T73 in non-sterile must on 2-phenylethyl acetate production has been examined. In both treatments tested, no significant differences in Saccharomyces yeast growth were found, whereas non-Saccharomyces yeast growth was significantly different during all days of fermentation. Independently of the type of inoculation, S. cerevisiae was the predominant species from day 3 till the end of the fermentation. The dynamics of indigenous and inoculated yeast populations showed H. vineae to be the predominant non-Saccharomyces species at the beginning of fermentation in sequentially inoculated wines, whereas the simultaneous inoculation of S. cerevisiae did not permit any non-Saccharomyces species to become predominant. Differences found in non-Saccharomyces yeast growth in both fermentations influenced the analytical profiles of final wines and specifically 2-phenylethyl acetate concentration which was two-fold increased in sequentially inoculated wines in comparison to those co-inoculated. In conclusion we have shown that H. vineae inoculated as part of a sequential mixed starter is able to compete with native yeasts present in non-sterile must and modify the wine aroma profile.  相似文献   

10.
In this study, the antibacterial activities of a bovine Lactoferrin pepsin hydrolysate (LFH) and a synthetic peptide derived from bovine lactoferricin (LfcinB17–31) have been evaluated against Oenococcus oeni and three additional lactic acid bacteria (LAB) known to cause spoilage during winemaking processes. Inhibition of bacterial growth was demonstrated in vitro in synthetic broth media (MRS) for both LFH and LfcinB17–31. The bactericidal activity of the synthetic peptide was also assayed and found to vary depending on the bacterial species and the matrix in which exposure to peptide occurred (either MRS broth or white must). Specificity of LfcinB17–31 for Lactobacillus brevis, Pediococcus damnosus, and O. oeni was demonstrated in must fermentation experiments in which these three LAB co-existed with the winemaking Saccharomyces cerevisiae T73 in the presence of the peptide. Finally, fermentation experiments also showed that LfcinB17–31 at inhibitory concentrations did not alter either fermentation kinetics or specific enological parameters.  相似文献   

11.
Saccharomyces cerevisiae is the main yeast species responsible for wine fermentation; however, its presence during maturing or barrel-ageing can sometimes result in a reduction in the quality of wine by refermentation. In this work, we developed a quantitative real-time PCR (QPCR) for the rapid detection and quantification of S. cerevisiae in wine. The primers and the hydrolysis probe (TaqMan®) were designed from the sequence of a DNA fragment present only in S. cerevisiae and absent in other wine yeasts obtained from an RAPD-PCR analysis. The QPCR developed was highly reproducible, allowing the specific detection and quantification of this yeast in artificially contaminated wines, with a detection limit of 78 CFU/mL. Furthermore, the usefulness of the QPCR developed was evaluated through the quantification of the yeast in wine samples obtained from vineyards, confirming the quantitative capacity of the method. The methodology developed was specific, fast and a sensitive tool for the detection and enumeration of S. cerevisiae cells in wine.  相似文献   

12.
N.T.P. Dung  M.J.R. Nout 《LWT》2007,40(1):130-135
In the Mekong Delta region of South-Vietnam, wine from purple glutinous rice is particularly interesting because of its sherry-like taste and flavour and its attractive brown-red colour. It is manufactured at home or by small cottage industries, using traditional solid-state starters (Men). With the objective of improving the knowledge about the functionality of traditional Men, this study deals with the properties and composition of 29 samples of Vietnamese commercial rice wine starters. We selected 6 rice wine starters for their superior ability to liquefy cooked rice, high ethanol accumulation, and production of attractive flavour and colour in the resulting wine. Ethanol contents reached 12 g/100 ml, a sweet alcoholic fragrance was noticed and the wine colour varied from red to lightly brown. Total mould, yeast and bacteria counts in Men were 3.4-6.0, 5.8-7.2 and 2.6-6.2 log CFU/g of dry weight sample, respectively. A total of 119 microbial strains, comprising 53 moulds, 51 yeasts and 15 bacteria, was isolated. Mould isolates with excellent functionality were identified as Amylomyces rouxii, Amylomyces aff. rouxii (an atypical form of A. rouxii), Rhizopus oligosporus and Rhizopus oryzae. Yeast isolates with excellent fermentation properties were all identified as Saccharomyces cerevisiae; other, less functional isolates were identified as Candida glabrata and Pichia anomala.  相似文献   

13.
Vitis vinifera cv. Albariño is an aromatic variety characterised by terpenes present largely as glycosidic flavour precursor compounds, which depends on fermentation to reveal its aromatic varietal potential. Clarified Albariño must containing 250 mg N/L (control) was supplemented with diammonium phosphate to 350 and 450 mg N/L before fermentation with a high-nitrogen-demand wine strain of Saccharomyces cerevisiae (M05). Ammonium supplementation had a significant effect on the chemical composition (titratable acidity and ethanol) and volatile profile of Albariño wines. Varietal compounds in the free fraction (limonene, linalool, α-terpineol, α-ionone and β-damascenone) and bound (limonene, linalool and α-terpineol), as well as most yeast-derived fermentation products (including esters, higher alcohols and volatile acids) were associated with moderate nitrogen concentrations. Free β-ionone, bound geraniol, bound α-ionone, bound β-damascenone and 1-hexanol were associated with high nitrogen concentrations. OAV wines made with moderate nitrogen exhibited a higher total odorant activity, driven by ethyl esters, terpenes and C13-norisoprenoids, resulting in fruity and floral aroma attributes.  相似文献   

14.
The current study was carried out to elucidate the effect of sequential inoculation of Saccharomyces cerevisiae (RC212, D254) and Oenococcus oeni (SG26, Lalvin 31 and Uvaferm Alpha) on the production of cherry wines, especially on the chemical and aromatic characteristics. SI-D culture required the shortest period (23 d) to complete the fermentation, while other inoculations needed longer time. Analysis from chemical composition showed that titratable acidity and content of l-malic acid exhibited evident differences among the samples after MLF. For volatile compounds, 49 major components were identified, mostly comprising of alcohols, acids and esters. Cherry wines obtained from SI-B and SI-C showed higher contents of total volatile alcohols, and SI-D wines produced the greatest amount of volatile acids. According to the odour active value (OAV), 9 out of 49 studied volatile components had OAV >1 in all the analyzed wines, while six volatile components showed OAV >1 only for some of them. Furthermore, a sensory analysis was performed to compare the sensory profile of these cherry wines, and results evidenced that wines resulting from different inoculations presented diverse sensory profiles. These findings suggest that sequential inoculations posed a great potential in affecting and modulating the aromatic profile of cherry wines.  相似文献   

15.
In the last few years there is an increasing interest on the use of mixed fermentation of Saccharomyces and non-Saccharomyces wine yeasts for inoculation of wine fermentations to enhance the quality and improve complexity of wines. In the present work Lachancea (Kluyveromyces) thermotolerans and Saccharomyces cerevisiae were evaluated in simultaneous and sequential fermentation with the aim to enhance acidity and improve the quality of wine.  相似文献   

16.
Wine is the result of the performance of different yeast strains throughout the fermentation in both spontaneous and inoculated processes. 22 Saccharomyces cerevisiae strains were characterized by microsatellite fingerprinting, selecting 6 of them to formulate S. cerevisiae mixed cultures. The aim of this study was to ascertain a potential benefit to use mixed cultures to improve wine quality. For this purpose yeasts behavior was studied during co-inoculated fermentations. Aromatic composition of the wines obtained was analyzed, and despite the fact that only one strain dominated at the end of the process, co-cultures released different concentrations of major volatile compounds than single strains, especially higher alcohols and acetaldehydes. Nevertheless, no significant differences were found in the type and quantity of the amino acids assimilated. This study demonstrates that the final wine composition may be modulated and enhanced by using suitable combinations of yeast strains.  相似文献   

17.
Knowledge of physiological behavior of indigenous tequila yeast used in fermentation process is still limited. Yeasts have significant impact on the productivity fermentation process as well as the sensorial characteristics of the alcoholic beverage. For these reasons a better knowledge of the physiological and metabolic features of these yeasts is required. The effects of dilution rate, nitrogen and phosphorus source addition and micro-aeration on growth, fermentation and synthesis of volatile compounds of two native Saccharomyces cerevisiae strains, cultured in continuous fed with Agave tequilana juice were studied. For S1 and S2 strains, maximal concentrations of biomass, ethanol, consumed sugars, alcohols and esters were obtained at 0.04 h−1. Those concentrations quickly decreased as D increased. For S. cerevisiae S1 cultures (at D = 0.08 h−1) supplemented with ammonium phosphate (AP) from 1 to 4 g/L, concentrations of residual sugars decreased from 29.42 to 17.60 g/L and ethanol increased from 29.63 to 40.08 g/L, respectively. The S1 culture supplemented with AP was then micro-aerated from 0 to 0.02 vvm, improving all the kinetics parameters: biomass, ethanol and glycerol concentrations increased from 5.66, 40.08 and 3.11 g/L to 8.04, 45.91 and 4.88 g/L; residual sugars decreased from 17.67 g/L to 4.48 g/L; and rates of productions of biomass and ethanol, and consumption of sugars increased from 0.45, 3.21 and 7.33 g/L·h to 0.64, 3.67 and 8.38 g/L·h, respectively. Concentrations of volatile compounds were also influenced by the micro-aeration rate. Ester and alcohol concentrations were higher, in none aerated and in aerated cultures respectively.  相似文献   

18.
The strains of two species of yeast, Saccharomyces cerevisiae and Pichia guillermondii, both with high hydroxycinnamate decarboxylase (HCDC) activity (56% and 90% respectively), were used in the fermentation of musts enriched with grape anthocyanins, to favour the formation of highly stable vinylphenolic pyranoanthocyanin pigments. The different strains were used to ferment the must separately, simultaneously, or sequentially, the latter involving an initial period using the yeast with the greatest HCDC activity (P. guillermondii). The must was made from concentrated grape juice diluted to 220 g/l of sugar, and enriched with grape anthocyanins to 100 mg/l and with p-coumaric acid to 120 mg/l. The pH was fixed to 3.5. All 50 ml micro-fermentations were done in triplicate. The development of anthocyanin-3-O-glucoside precursors, the decarboxylation of p-coumaric acid, and the formation of 4-vinylphenol and vinylphenolic pyranoanthocyanin derivatives were studied during the fermentation. The fermentation strategy used and the yeast HCDC activity significantly influenced the formation of vinylphenolic pyranoanthocyanins. The latter molecules were separated, identified, and quantified using high performance liquid chromatograph with diode array detection and electrospray-mass spectrometry (HPLC-DAD-ESI/MS). The volatile compounds profile was screened during fermentation using gas cromatogrphy-flame ionisation detection (GC-FID), in order to detect and quantify the main molecules. The best results were reached with the sequential fermentation (3.74 mg/l of malvidin-3-O-glucoside-4-vinylphenol). This work shows that during mixed or sequential fermentations carried out with non-Saccharomyces or highly fermentative Saccharomyces strains, with high HCDC activity, the content of stable pigments can be increased without sensorial modifications.  相似文献   

19.
Acetaldehyde is the terminal electron acceptor in the alcoholic fermentation by Saccharomyces cerevisiae. Quantitatively the most important carbonyl by-product, it has relevance for ethanol production yields as well as product stabilization and toxicology. The aim of this study was to investigate the effect of various enological parameters on acetaldehyde kinetics during alcoholic fermentations. Two commercial yeast strains were tested in two grape musts and the pH, temperature, SO2 and nutrient addition were varied. All incubations had uniform kinetics where acetaldehyde reached an initial peak value followed by partial reutilization. Peak acetaldehyde concentrations and residual concentrations after 15 days of fermentations ranged from 62 to 119 mg l− 1 and 22 to 49 mg l− 1, respectively. A positive linear relationship was found between peak and final acetaldehyde levels in Gewürztraminer, but not Sauvignon Blanc fermentations, where sluggish fermentations were observed. Several factors had a significant effect on peak and/or final acetaldehyde levels. SO2 addition, grape cultivar and fermentation nutrition were important regulators of peak acetaldehyde production, while final acetaldehyde concentrations were correlated with SO2 addition, grape cultivar and temperature. The results allowed to estimate the acetaldehyde increase caused by SO2 addition to 366 ??g of acetaldehyde per mg of SO2 added to the must. The course of the final fermentation phase was shown to determine acetaldehyde residues. Comparison of acetaldehyde and hexose kinetics revealed a possible relationship between the time of occurrence of peak acetaldehyde concentrations and the divergence of glucose and fructose degradation rates.  相似文献   

20.
Yeasts Candida kefyr NCYC143, Candida utilis CUM, Kluyveromyces lactis KL71, Saccharomyces bayanus SB1, Saccharomyces cerevisiae EC1118, Saccharomyces chevalieri CCICC1028, Candida famata (previously Torulopsis candida) CCICC1041 and Williopsis saturnus var. saturnus CBS254 were screened for their ability to produce flavour-active methionol (3-methylthio-1-propanol) in coconut cream supplemented with l-methionine. The yeasts varied with their ability to produce methionol from methionine with Saccharomyces cerevisiae EC1118 producing the most, followed by Kluyveromyces lactis KL71. Little methionol was produced by the other yeasts. Methionol production by Kluyveromyces lactis KL71 was subjected to further studies under different conditions of initial pH (4.0-6.3), temperature (20-33 °C), l-methionine concentration (0.05-0.25%) and yeast extract concentration (0-0.50%); optimal conditions were established at pH 5.0, 33.0 °C, 0.15% l-methionine and 0.05% yeast extract. CharmAnalysis™ using SPME-GC-MS was conducted on the coconut cream ferment; methional (3-methylthio-1-propanal), methionol and 2-phenylethyl acetate were found to be the most potent aroma-active compounds. The product of coconut cream fermentation by Kluyveromyces lactis KL71 may be considered as a novel, plant-based, natural and complex flavoring bioingredient in food applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号