首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 862 毫秒
1.
利用直馏柴油加氢脱硫反应研究初活稳定过程对NiMo/Al2O3催化剂加氢脱硫活性稳定性的影响。分别采用干法和湿法两种硫化方式制备的NiMo/Al2O3催化剂在初活稳定条件下处理48h,对比评价了无初活稳定和经48h初活稳定处理工况下催化剂活性以及积炭量发生的变化,并借助XPS,TEM,TG-MASS和碳含量分析等方法对样品进行了表征。结果表明:采用干法或湿法硫化,初活稳定过程均可以提高硫化后NiMo/Al2O3催化剂的稳定性;初活稳定过程促进了活性相上积炭量的增加,而这些积炭的存在可起到适度修饰活性相表面结构的作用,有助于提高催化剂的稳定性。  相似文献   

2.
采用常规透射电子显微技术(TEM)和扫描透射电子显微技术结合X射线能谱分析的测量技术(简称分析电子显微技术——AEM)对NiMo/Al2O3系工业加氢脱硫催化剂的氧化态和硫化态进行对比研究。结果表明,对于硫化态加氢脱硫催化剂,TEM可以给出清晰的活性相的形貌和分布信息,活性相条纹的长度、堆叠层数等活性相参数特征的统计与其催化活性具有良好的关联。通过AEM的Mapping技术对NiMo/Al2O3催化剂氧化态和硫化态活性组分Ni、Mo的微区成分分布的测定,可获得催化剂活性相前体和硫化态活性组分的成分分布信息,克服了单一TEM不能提供成分信息的缺点,增加了对催化剂制备过程中活性组分变化的了解。  相似文献   

3.
柠檬酸对NiW/Al2O3加氢脱硫催化剂硫化行为的影响   总被引:2,自引:2,他引:0  
在NiW/Al2O3催化剂中引入柠檬酸络合剂,考察了柠檬酸对不同温度硫化的NiW/Al2O3催化剂4,6-DMDBT加氢脱硫活性的影响,并采用程序升温氢还原(H2-TPR)、X射线光电子能谱(XPS)和高分辨透射电镜(HRTEM)进行了表征。结果表明,硫化温度较低时(<300℃),柠檬酸对NiW/Al2O3催化剂的加氢脱硫活性没有促进作用,硫化温度较高时(≥300℃),明显促进了NiW/Al2O3催化剂的脱硫活性,并对加氢脱硫途径表现出选择性促进效应。柠檬酸不仅减弱了金属W与载体之间的相互作用,促进了W物种的还原和Ni-W-O混合相的生成。而且还降低了金属W的硫化温度,促进了W物种的硫化和小尺寸WS2晶粒的生成。  相似文献   

4.
向一系列不同金属原子比[r=n(Ni)/n(Ni+Mo)]的NiMo/γ-Al2O3催化剂中引入柠檬酸,考察了柠檬酸对NiMo催化剂加氢脱硫活性的影响,并采用XRD,XPS,HRTEM等表征手段,从活性金属分散性、硫化度、活性相比例以及活性相形貌等方面分析了柠檬酸对助剂Ni作用的影响。结果表明:在r<0.3时,柠檬酸对NiMo催化剂的加氢脱硫活性有促进作用,柠檬酸的引入提高了催化剂的硫化度和NiMoS活性相的比例,有利于形成片晶尺寸较小、堆叠层数较多的活性相,对Ni的助剂效应有小幅促进作用;但是当r≥0.3时,柠檬酸对NiMo催化剂的加氢脱硫活性基本没有促进作用,柠檬酸的引入并未明显改变NiMo催化剂的活性金属硫化度、NiMoS活性相比例以及活性相形貌,对Ni的助剂效应影响较小。  相似文献   

5.
以水溶性复合硫化物为硫化剂制备了一步法预硫化型Ni-Mo/Al2O3催化剂FS-1,以氧化型Ni-Mo/Al2O3催化剂FO-1为参比剂,通过X射线衍射(XRD)和高分辨透射电镜(HRTEM)等表征方法对催化剂物化性质进行了表征,并对比考察了FS-1与FO-1对焦化汽油的加氢脱硫脱氮性能。结果表明:FS-1对焦化汽油的加氢脱硫脱氮性能优于FO-1,这可能是由于FS-1具有更高的硫化度、适宜的MoS2堆积层数和片晶长度,更易形成高加氢活性的II型Ni-Mo-S相,使其具有更高本征加氢活性所致。  相似文献   

6.
在氢分压4.0MPa、523~723K硫化温度范围内,考察了硫化温度对含和不含柠檬酸的NiW/Al2O3催化剂的4,6-二甲基二苯并噻吩(4,6-DMDBT)加氢脱硫活性的影响,并采用X射线光电子能谱(XPS)和高分辨透射电镜(HRTEM)对硫化态催化剂进行了表征。结果表明,含柠檬酸的NiW/Al2O3催化剂的加氢脱硫活性随硫化温度的变化规律与无柠檬酸催化剂相似,脱硫活性均在673K时达到最高值,并且前者的脱硫活性明显高于后者。随着硫化温度的升高,催化剂中W物种的硫化度快速上升,WS2微晶数量增多,尺寸增大;当硫化温度高于623K后,W物种硫化度增幅变小。催化剂脱硫活性与W物种硫化度存在较高的关联度。  相似文献   

7.
通过设计不同原料对NiMoW/Al_2O_3催化剂活性稳定性影响的评价方法实验,考察柴油超深度加氢脱硫条件下影响催化剂失活的根本原因,对经历不同原料反应后的催化剂的积炭状况、孔结构特征以及活性相状态进行分析表征。结果表明,加工过更加劣质的原料油后,NiMoW/Al_2O_3催化剂的失活速率加快,催化剂中积炭的数量和缩合程度增加,反应物扩散限制更加严重,活性中心可接近性下降,活性相聚集,活性中心数目减少,本征活性下降。因此积炭生成与活性相结构变化是不同原料导致柴油超深度加氢脱硫NiMoW/Al_2O_3催化剂失活的根本原因。  相似文献   

8.
器外预硫化型MoNiP/γ-Al2O3催化剂的加氢脱硫性能研究   总被引:5,自引:0,他引:5  
以二苯并噻吩为模型化合物,研究了器外预硫化型加氢催化剂MoNiP/γ-Al2O3的加氢脱硫初始活性及其储存稳定性。结果表明,使用不同配方的硫化剂,在反应温度160℃、浸渍温度160℃、浸渍时间4h、氮气热处理温度300℃的条件下制备得到的器外预硫化催化剂的加氢脱硫活性较好,部分可以达到器内预硫化催化剂的效果,但其加氢活性稍弱;二苯并噻吩在器内与器外预硫化催化剂上的加氢脱硫反应的历程类似,但是对于器外预硫化催化剂而言,二苯并噻吩的加氢脱硫主要依赖于氢解历程。器外预硫化催化剂的储存稳定性较好,长期储存后仍可以维持较高的HDS活性。  相似文献   

9.
分别以水蒸气改性和酸碱改性γ-Al2O3为载体制备了2种NiMoP/ Al2O3渣油加氢催化剂(SR和MG),并进行不同硫化条件的处理得到硫化态催化剂。构建了原位红外光谱、Raman、XPS、TEM、TG-MS等系统表征体系,全方位研究了硫化态催化剂活性中心的分布、形貌、配位状态以及含碳物种等。结果表明:硫化温度由230℃升高到370 ℃时能促进2种渣油加氢催化剂样品硫化度的提升和NiMoS相的生成,同时含碳物种的含量增加且缩合度增大。与SR催化剂相比,MG催化剂较易硫化,MoS2条纹较长且层数稍低,NiMoS相占比稍高,说明通过载体改性适当减弱载体与活性相作用,可提高硫化度和活性相助剂化效果,进而提高渣油加氢脱硫率,与反应活性数据一致。通过设计实验证实了硫化过程伴随着积炭前驱体的吸附和生成,高温净化过程中活性相也能发生动态重排、转变和新生。合适的酸中心和活性中心密度、合适的助剂化程度、能够在反应温度下保持活性相的平衡浓度以及积炭前驱体脱附转化能力是理想的渣油加氢催化剂硫化后的特征。  相似文献   

10.
非负载型催化剂上柴油深度加氢脱硫工艺条件研究   总被引:1,自引:0,他引:1  
采用水热合成法制备了非负载型Ni-Mo-W催化剂并对其进行表征,研究催化裂化(FCC)柴油在该催化剂上的深度加氢脱硫过程,考察反应温度、反应压力、空速和氢油比等工艺条件对柴油深度加氢脱硫效果的影响,并与工业化NiMo/Al2O3催化剂的加氢活性进行对比。结果表明,在反应温度为340 ℃、反应压力为6.0 MPa、空速为1.5 h-1、氢油体积比为600的条件下,非负载型Ni-Mo-W催化剂可使胜华FCC柴油的脱硫率达到99.84%,脱氮率达到99.96%,与工业化NiMo/Al2O3催化剂相比,非负载型Ni-Mo-W催化剂具有更高的加氢活性。  相似文献   

11.
在硫化温度623 K下,硫化压力在20~80 MPa 范围内改变时,考察了硫化压力对含和不含柠檬酸的NiW/Al2O3催化剂的4〖DK〗,6 二 甲基二苯并噻吩(4〖DK〗,6 DMDBT)加氢脱硫催化活性的影响,并采用X射线光电子能谱 (XPS)和高分辨透射电镜(HRTEM)对硫化态催化剂进行了表征。结果表明,在20~60 MPa 范围,两个催化剂的加氢脱硫催化活性均随硫化压力增加而提高,且从20 MPa增加至40 MPa时,活性增幅最大。当硫化压力超过60 MPa后,前者活性仍继续上升,而后者活性则 变化很小。相同条件下,前者的脱硫活性均高于后者。 随着硫化压力的提高,催化剂中W物 种硫化度上升,WS2微晶数量增多,长度变短,而WS2微晶堆叠层数则呈现先升后降趋势 。催化剂脱硫活性与W物种硫化度关联度较高,并受到WS2微晶形貌变化的影响。柠檬酸的 存在促进了W物种的硫化,并导致生成数量更多、长度较长、堆叠层数较高的WS2微晶 。  相似文献   

12.
采用原位硫化热重分析技术研究了氧化铝负载的氧化态Co-Mo加氢脱硫催化剂在H2S/ H2氛围下的热重行为。通过硫化过程的增重值可计算出催化剂的相对硫化度,并与微反装置测定的催化剂加氢脱硫活性(HDS)进行了关联分析,发现催化剂相对硫化度与其HDS活性存在良好的相关性。用高分辨透射电子显微镜分析比较了微反装置硫化和热重原位硫化的硫化态Co-Mo加氢脱硫催化剂的微观形貌,结果显示,热重原位硫化的催化剂活性相微观形貌及活性相特征统计结果与微反硫化的硫化态催化剂相似。原位硫化热重分析可以作为快速筛选、评价加氢脱硫催化剂活性的工具。  相似文献   

13.
以γ-Al2O3为载体,采用等体积浸渍法分别制备了H2SO4,Ni(NO3)2,Ni(NO3)2-H2SO4,NiSO4改性的加氢脱硫催化剂。采用X射线衍射、N2吸附-脱附、H2-程序升温还原、紫外-拉曼光谱、X射线光电子能谱和反应性能评价等方法研究了硫酸根对Ni/γ-Al2O3催化剂的物性和催化噻吩加氢脱硫选择性的影响。结果表明:含硫酸根前躯体制备的Ni/γ-Al2O3催化剂的加氢脱硫活性和选择性高于Ni(NO3)2前躯体制备的催化剂;NiSO4前躯体制备催化剂的加氢脱硫活性和选择性最高,较Ni(NO3)2制备的催化剂分别提高了19百分点和78%。催化活性的差异与催化剂中Ni的形态相关,硫酸根的存在一方面减弱了Ni与载体间的相互作用,另一方面提供了镍原位自硫化的硫化剂,形成的硫化镍物种与NiSO4是催化剂的活性中心,其脱硫活性和选择性明显高于引入硫化剂硫化的催化剂。  相似文献   

14.
焦化汽柴油混合加氢精制组合催化剂的研究   总被引:1,自引:1,他引:0  
采用成型载体浸渍法制备出了NiMoW/Al2O3-TiO2焦化汽柴油混合加氢精制催化剂和NiMo/Al2O3脱硅报护剂,并对组合催化剂进行了焦化汽柴油加氢精制工艺条件试验。结果表明,在活性组分相同的情况下,随着载体中TiO2含量的增加,催化剂的堆积密度增大,侧压强度略有降低,孔容和比表面积减少,总酸量降低。当TiO2质量分数大于5%时,出现TiO2的锐钛矿晶相峰。TiO2改性载体制备的催化剂,具有更好的加氢脱硫、加氢脱氮和加氢活性。制备的焦化汽柴油加氢脱硅保护剂具有较大的孔容和比表面积,而且孔半径较集中分布在﹥5.0nm的区域内,具有较好的容硅能力。焦化汽柴油混合加氢精制组合催化剂适宜的加氢工艺条件为:温度340℃,体积空速2.0h-1,氢油体积比500:1,压力6.7MPa。  相似文献   

15.
通过溶胶凝胶法制备了纳米HY分子筛-γ-Al2O3复合材料(AZ-x),并用作载体制备了系列NiMo催化剂(NiMo/AZ-x)。XRD, BET, TPD, TPR, HRTEM 和FT-IR分析手段用来表征载体和催化剂。与NiMo/γ-Al2O3相比,NiMo/AZ-x催化剂在FCC柴油加氢脱硫中表现出了更高的活性,并且,在复合载体中纳米HY分子筛含量小于20%的条件下,催化剂的加氢脱硫活性逐渐升高。与γ-Al2O3相比,纳米HY分子筛的引入能够改善复合材料的孔结构,有利于反应物分子在载体孔道中传输扩散。纳米HY分子筛的引入同时能够修饰载体表面特性,提高低温易还原金属比例,并且能够修饰MoS2形貌,导致形成具有较高边角位Mo原子分布的多层MoS2结构。  相似文献   

16.
 采用不同顺序将Na2O引入到NiMo/MCM-41催化剂前驱体中,并以质量分数0.8 %的二苯并噻吩(DBT)的十氢萘溶液作模型化合物,考察了催化剂的加氢脱硫(HDS)催化性能。结果表明,引入Na2O促进了NiMo/MCM-41催化剂前驱体中 -NiMoO4 物种的生成,不利于活性组分的分散,同时还抑制了其还原。分步浸渍法引入Na2O影响了催化剂中Mo物种的配位状态。Na2O引入顺序对NiMo/MCM-41催化剂HDS催化活性有较大影响。共浸渍法引入Na2O时,同时抑制了催化剂的加氢反应路径(HYD)和直接脱硫反应路径(DDS)催化活性,因此其HDS催化活性最低。与共浸渍和在活性组分之后引入Na2O相比,在活性组分之前引入Na2O对催化剂的HYD催化活性影响最小,但DDS催化活性显著增加,提高了总的HDS催化活性。通过控制碱金属氧化物的引入顺序,可以调变催化剂活性和选择性,是一种对硫化物催化剂有效的改性方法。  相似文献   

17.
在本文中制备了六种不同金属含量的Ni-Mo型催化剂并用N2吸附和X-射线衍射方法表征其物化性质。催化剂的活性相微结构采用拉曼光谱、程序升温还原(TPR)、X-射线光电子能谱和高分辨透射电镜方法表征。其加氢脱硫(HDS)活性则在滴流床微反装置上评价。分析结果表明:Mo元素的硫化度和MoS2晶片长度仅随着催化剂活性金属含量提高略有增加。这一微弱变化是因为所有催化剂其氧化态时Mo元素均以同样的聚氧钼粒子形态存在。然而,NiSx硫化度和MoS2晶片层数的较大增加则要归功于金属-载体间逐渐减弱的相互作用力。这一相互作用力是根据TPR变化结果得到。催化剂的HDS活性随着活性中心数目的提高而增加,然而对于较高的金属含量催化剂,其HDS活性趋于稳定,这是由于硫原子难于接触到活性中心而导致的。这一变化是由于金属含量增加致使催化剂的比表面积和孔容随之下降,以及过多层MoS2晶片随金属含量增加而大量生成所导致的。  相似文献   

18.
采用固定床微反装置对一工业CoMo/Al2O3催化剂在不同压力下进行硫化,并对硫化态催化剂进行了加氢脱硫活性评价;借助高分辨透射电镜(TEM)、X射线光电子能谱(XPS)等手段对硫化态催化剂进行了表征。TEM结果表明,随着硫化压力的升高,MoS2片晶的堆积层数和长度均有所增加,有利于减弱活性金属与载体间的强相互作用。XPS结果表明,随着硫化压力的升高,催化剂的硫含量以及硫化程度均逐渐增大,有利于催化剂活性的提高。此外,4.0 MPa压力下反应18 h后催化剂的XPS表征结果表明,由于反应压力比硫化压力有所提高,对催化剂存在补充硫化的作用。催化剂活性评价结果证实了TEM与XPS表征结果,在硫化压力4.0 MPa、反应温度360 ℃时催化剂的加氢脱硫活性最高,脱硫率达到99.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号