首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
为了研究吸附性气体对煤岩基质变形和渗透率的影响,利用CT扫描技术刻画了煤岩吸附CO2后煤岩裂隙空间尺寸的展布特征;采用煤层气吸附/解吸系统,测试了CO2、N2和CH4的吸附/解吸参数;基于煤岩三轴渗流测试系统,测试了不同应力条件下气体渗流特征.研究结果表明:基于CT图像直接观察了煤岩吸附CO2后煤岩裂隙受到基质膨胀而压缩的现象,试样裂隙几何尺寸压缩率为24.10%;揭示了煤岩吸附气体后渗透率降低的两个主要机理,一是煤岩基质膨胀压缩了渗流通道,二是吸附在煤岩颗粒表面的气体分子占据了部分渗流通道;当气体压力小于1.5 MPa时,滑脱效应会夸大气体吸附对煤岩渗透率的影响,并提出了利用非吸附性气体He消除滑脱效应的方法;煤岩吸附气体量越大,渗透率降低程度越大,由大到小依次为CO2、CH4和N2,煤岩渗透率和气体压力呈幂指数关系.研究结果对煤层气提高采收率技术和CO2在煤层中的封存技术具有理论指导意义.  相似文献   

2.
煤层内气体生产机理与常规气藏有着明显的差异,因此人们把煤层气看着一种非常规的气体资源。本文叙述了甲烷气在煤层中的储存、释放和流动,气体解吸机理受含水层静水压力的控制。应用本文给出的吸附/解吸等温线可得出每吨煤中含气量与煤层中地下压力的关系。解吸释放的气体通过煤层扩散,扩散作用受斐克定律所控制,最后根据达西定律扩散到煤裂隙内,并与水一起流动。煤层的厚度、解吸等温线、解吸压力、储层静力压力、固有渗透率  相似文献   

3.
孙仁远  任晓霞  胡爱梅  陈东  林李 《石油仪器》2011,25(3):18-20,23,100
针对我国煤层气开发中存在的产气率低、回采周期长的问题以及CO2排放量大、污染环境严重等现象,研制了一套可以进行煤层气吸附/解吸性能评价及注CO2开采煤层气模拟的实验系统。利用该系统开展了不同气体在煤岩中的吸附/解吸性能评价研究和注CO2开采煤层气效果实验研究。实验结果表明,CO2在煤岩中的吸附量明显高于CH4的吸附量;与自然降压开采相比,注CO2可以提高煤层气的采收率,提高幅度在10%以上。而且随CO2注入量的增加,煤层气采收率增大。  相似文献   

4.
煤层气以吸附气为主,解吸-扩散-渗流过程共同控制着煤层气的产量,仅采用基于达西定律的渗透率的方法来评价煤层气储层损害有待完善。为此,基于煤岩储层微观结构特征和煤层气运移产出机理,以宁武盆地9号煤层和现场用钻井完井液为研究对象,开展了煤层气解吸、毛细管自吸和钻井完井液动—静态损害评价等实验,并采用微观手段分析了钻井完井液影响煤层气解吸—扩散—渗流过程的机理。结果表明:钻井完井液作用后煤样与平衡水煤样、饱和水煤样相比,煤层气解吸量和扩散系数降低;与地层水相比,煤岩对钻井完井液的自吸能力强且吸附滞留严重,导致气相返排率偏低;钻井完井液滤液损害是造成煤层渗透率下降的主要原因。结合红外光谱、润湿角测定和扫描电镜分析结果,得出认识:钻井完井液滤液通过改变煤的结构、润湿性和孔隙连通性,进而影响到了煤储层气体的运移行为。  相似文献   

5.
煤层气气驱吸附及解吸规律实验研究   总被引:1,自引:0,他引:1  
张杰  林珊珊  曲永林  王荣  李登峰 《特种油气藏》2012,19(6):122-125,148
为研究煤层气的赋存形式和气驱原理,通过实验测量了煤层气注气开采中主要涉及的3种气体CH4、CO2和N2的吸附及解吸量,并利用Langmuir模型和BET模型进行实验处理拟合等温曲线,比较3种气体吸附性的强弱和模型的适用性,得出气驱煤层气的机理。此外,还通过实验研究了注入不同气体后煤岩渗透率的变化情况,定性分析了不同气体驱替煤层气时流量的大小以及不同气体驱替的效果。研究结果表明,开采煤层气时可利用CO2和N2的竞争吸附将煤层气采出,N2具有增渗作用,CO2具有减渗作用。  相似文献   

6.
�й�ú����ѹ������   总被引:8,自引:0,他引:8  
钟玲文 《天然气工业》2003,23(5):132-134
煤储层压力是指煤层孔隙中流体 (包括气体和水 )的压力。煤储层压力对煤层气含量、气体赋存状态起着重要作用 ;同时 ,储层压力也是水和气体从煤层流向井筒的功能。当煤储层压力降低时 ,煤孔隙中吸附的气体开始解吸 ,向裂隙方向扩散 ,在压力差的作用下 ,从裂隙向井筒流动。煤层气开采就是根据这一原理 ,通过排水降低压力而达到采气的目的。地质构造演化、生气阶段、区域水文地质条件、埋深、含气量、大地构造位置、地应力等诸多因素都可以对储层压力造成影响。在煤层气开发过程中 ,储层压力越高 ,形成的压力差越大 ,势能也就越大 ,流速越快 ,…  相似文献   

7.
数值模拟是研究煤层气渗流的重要手段。将煤层气储层视为双孔双渗的多孔介质,同时考虑煤层的变形对瓦斯渗流的影响,建立煤层气藏应力—渗流流固耦合模型。综合考虑了煤层气的吸附与解吸效应、应力与渗流耦合作用等因素对煤层气开采的影响。采用SPH(Smoothed Particles Hydrodynamics)法求解控制方程,编制计算机程序。利用该模型求解并分析了煤层气的解吸—渗流过程以及煤层渗透率的变化情况。结果表明,SPH方法能够应用于煤层气解吸—渗流过程的数值模拟研究中来;煤层基质渗透率与裂缝渗透率与有效应力变化有密切关系,煤层气的渗透过程需要考虑煤层基质与裂隙受到的变形影响;考虑煤层气的吸附与解吸效应更加符合实际的煤层气渗流过程,能够更合理地估算实际采气过程中瓦斯涌出量。  相似文献   

8.
考虑启动压力梯度的煤层气羽状水平井开采数值模拟   总被引:2,自引:0,他引:2  
建立了对非均质各向异性双重介质煤层气进行定向羽状水平井开采的数学模型.模型中考虑了与气体吸附、解吸和扩散相耦合的三维气、水两相渗流以及储层的压力敏感性和煤层本身所具有的低渗透特性,即低渗透地层启动压力梯度的影响,同时还考虑了井筒内的压降损失.利用有限差分法对数学模型进行了数值求解,完成了煤层气定向羽状水平井开采的数值模拟,并着重分析了启动压力梯度对模拟产量的影响.计算结果表明,利用定向羽状水平井能够大幅度提高低渗透煤层气的开采效率.启动压力梯度的存在会使煤层中羽状水平井的降压效果变差,从而减少煤层气的产量.  相似文献   

9.
煤层气开采过程中,由于孔隙压力降低和吸附解吸作用的影响,储层孔隙度和渗透率会发生复杂变化。研究煤层气储层结构特征、赋存机理及渗流规律时,将煤层气储层表征为存在基质微孔、基质孔隙和裂缝孔隙系统的三孔介质。煤层气吸附在基质微孔表面,流体在基质孔隙和裂缝系统中渗流。利用多孔介质弹性力学理论,对煤层气基质孔隙及裂缝系统的孔渗动态变化和影响因素研究分析,在考虑孔隙压缩作用及基质微孔中气体在解吸作用影响下基质孔隙和裂缝系统动态变化,以及基质及裂缝之间的耦合应变特征条件下建立了煤层气基质孔隙及裂缝系统的三孔孔渗动态变化模型。  相似文献   

10.
ú��ˮ��ú������̽�����е�����   总被引:10,自引:1,他引:10  
在煤层水压力作用下,煤岩储层中“圈闭”了一定数量的气体从而形成煤层气藏。煤层水在煤层气的生成、储集(吸附)和产出的全过程中都起着重要的作用。煤层水处于一定的封闭条件下时,煤岩储层表现为具较高的储层压力和含气量;水的不可压缩性对煤岩割理、孔隙起到了支撑作用,使煤岩储层能保持较高的渗透率。在煤层气开采过程中,合理控制煤层水的排采速度,是防止井筒附近应力过分集中,造成煤岩储层孔隙度、渗透率急剧下降的重要手段  相似文献   

11.
ú������������Ӱ�����ط���   总被引:13,自引:4,他引:9  
万玉金  曹雯 《天然气工业》2005,25(1):124-126
煤层气主要以吸附状态赋存在煤岩基质中,只有当储层压力降低后才可以从基质中解吸出来,煤岩裂隙或割理中多被水充满,而裂隙与割理是煤层中的主要运移通道,煤层气需要通过排水(裂隙或割理)降压(煤岩储层)方式才得以采出,故煤层气的产量受煤岩性质、压力水平和两相渗流特征等多种因素的影响。文章分析认为,影响煤层气井单井产量的主要因素包括煤岩渗透率、孔隙度、吸附能力、含气量、临界解吸压力、相对渗透率等;为提高煤层气井单井产量,必须通过洞穴完井、压裂改造或水平井等方式,改善井底渗流条件,有效地降低井底流压,扩大压力波及范围,增加有效解吸区,扩展两相渗流区范围。为实现煤层气的规模开发,必须深化认识储层特征,结合地质实际,选择合适的开发技术。  相似文献   

12.
煤层中通常会通过注N2、CO2提高煤层气采收率或实现CO2埋存,注入的气体将使煤层中裂纹发生扩展,诱发煤层失稳。以宁武盆地9号煤层为研究对象,开展等温吸附实验定量研究了煤岩对N2、CO2的吸附量,并开展三轴压缩力学实验定量研究了N2、CO2吸附对煤岩力学强度的影响;分析了煤岩中裂纹扩展机理,根据断裂力学理论推导出含气煤岩中的裂纹扩展速度方程,并根据方程计算出注不同气体时煤岩中的裂纹扩展速度。研究表明,在相同平衡压力下,煤岩对CO2的吸附量是CH4的6倍;煤岩饱和CO2后的力学强度明显低于饱和N2的力学强度;煤层注CO2比注N2引起的裂纹扩展速度更大,并且注气压力越高扩展速度越大。该理论成果能够为优化注气的比例及注气压力提供理论指导,并且对防止煤层失稳,保障顺利注气具有重要意义。  相似文献   

13.
关于大幅度提高我国煤层气井单井产量的探讨   总被引:7,自引:0,他引:7  
目前我国煤层气单井产量低,已经成为制约煤层气产业发展的严重障碍。为此,在分析煤层气单井产量形成和控制机理的基础上,剖析了低产的原因:①对于储层条件绝大多数都不如美国的中国煤层而言,游离态甲烷气的渗流在其运移中不占主导地位,而解吸和扩散常常成为其运移的主控因素;②现在所采用的系列开采技术不能直接调控上述主控因素,因而并不完全适用于该类煤层的煤层气开发。进而提出了提高煤层气单井产量的技术思路:借鉴防止煤层瓦斯突出和页岩气有效开发的研究成果和思路,以煤层中长水平井等特殊结构井井筒为依托,将井筒附近20~40 m之内的煤层压裂形成一个由大小不同裂缝构成的裂缝网络,将该区域内的煤层“分割”成若干大小不等的煤块,使每一个大煤块四周的毫米级裂缝与井筒直接相连并与大气相通,在抽排过程中较快形成高温、高压差下煤块内气体的释放,煤块中的各级裂缝加速这个过程,相当于加速了煤块中气体的解吸、扩散、渗流速度,同时因之而增大了煤块的基质渗透率,这又反过来加速了煤层气的解吸、扩散、渗流速度,从而可大幅度提高单井产量。  相似文献   

14.
艾池  栗爽  李净然  白琳 《特种油气藏》2013,20(1):71-73,154
煤层气开采过程中,煤岩储层渗透率随压力降低不断变化。在考虑有效应力、基质收缩以及滑脱效应对渗透率影响的基础上,建立煤储层渗透率动态变化模型。研究结果表明:开采初期,储层压力降低,有效应力增大,渗透率降低;煤层气解吸,煤岩基质收缩,渗透率回弹;开采后期,有效应力与基质收缩的影响逐渐减弱,滑脱效应占主导地位,渗透率明显增加。  相似文献   

15.
页岩储层结构复杂,多尺度效应明显,存在黏性流动、滑脱效应、Knudsen扩散以及表面扩散等多重运移机制。利用Knudsen数划分流态,绘制了考虑真实气体效应的流态图版。考虑多重运移机制,建立了页岩气藏表观渗透率模型;在此基础上综合考虑吸附解吸以及溶解气扩散影响,建立了页岩气藏多重介质不稳定渗流数学模型,明确了不同运移机制对页岩气藏非稳态产能的影响。结果表明:不同运移机制之间既相互联系又相互制约;Knudsen扩散和表面扩散均通过改变表观渗透率大小,对生产中期阶段的气体流动能力产生重要影响;溶解气和吸附气均是页岩气的重要赋存形式,是开发过程中自由气的补充,对气井生产中晚期非稳态产能具有显著影响;溶解气与吸附气能够增加气藏的累产气量,减缓气藏压力的下降速度。  相似文献   

16.
煤层气井开采时一般先排水后采气,且见气时的产量不是缓慢而是突然升高。为了弄清煤层气井突然产气的机理,从煤储层的结构、产气过程等方面进行了深入分析和研究。结果表明:煤岩储层微观上为双重介质,由割理(裂缝)和基质岩块2个系统组成;割理和基质孔隙中均充满了地层水,煤层气为赋存在基质中的吸附气,需排水降压解吸后才能被采出;刚解吸出的少量气体饱和程度较小,多以气泡的形式分散在基质孔隙水中,由于受到基质毛管压力的限制,这些气体无法流动;随着解吸气量增多,气泡逐渐变成连续相,气体的饱和程度增加,压力升高,流动性也有所增强,但是煤岩基质孔隙一般较小,毛管压力较高,很多气体仍被限制在基质孔隙中,只有当气体压力升高到突破毛管压力之后,大量的解吸气才会倾泻到割理中,致使煤层气井产气量突然升高。煤层气井的产气压力低于解吸压力,而煤层气的解吸压力其实就是地层水的饱和压力或泡点压力。在煤层气开采过程中,可以采取相应节流措施来控制煤层气井的产量变化,以达到稳产及保护煤层和生产管柱的效果。  相似文献   

17.
为了获取低渗煤层两相流动参数,系统分析了水饱和煤层甲烷运移动态特征。通过水饱和煤样气体运移实验明确了两相流体流动行为,获取了气相渗透率、排驱压力和吸附速率等参数。结果表明:水饱和煤岩中甲烷运移需克服毛细管排驱压力,渗透率越小其值越大;基于压差与排驱压力的大小关系,水饱和煤层中甲烷运移可分为毛细管力控制和扩散控制两个阶段;气体存在损失现象,毛细管力控制阶段甲烷滞留于煤岩孔隙,扩散控制阶段甲烷吸附于煤岩表面;水相降低了气体扩散能力,渗透率越高吸附速率越小。研究成果有助于原地条件下低渗水饱和煤层两相流动参数测试方法的改进,有利于水饱和煤层气藏排采制度优化。  相似文献   

18.
以沁水盆地高阶煤3^#煤层为研究对象,借助高压压汞实验对高阶煤的孔隙参数进行测试,研究了高阶煤的孔隙结构特征,采用解吸速率实验对高阶煤的解吸速率和解吸量进行分析,并探讨了孔隙结构对煤层气解吸产出的控制规律。结果表明:3^#煤层的孔隙半径较小,煤层孔隙结构复杂;煤层主要以气体吸附孔和气体扩散孔为主,气体渗流孔占比很少,煤层的吸附气体体积大、吸附性能强、气体的扩散、渗流条件差。3^#煤层孔隙结构分形特征曲线呈"两段型",孔径大于940.7 nm时,不具有分形特征;孔径小于940.7 nm时,分形维数介于2.67~2.76之间,具有很好的分形特征。高阶煤的煤层气解吸特征具有快速解吸和慢速解吸2个阶段,快速解吸时间短,解吸量占比低;慢速解吸时间长,解吸量占比高,煤层气解吸困难。煤层的孔隙结构对煤层气的解吸具有重要影响,高阶煤较差的孔隙结构控制着煤层气解吸速率慢、解吸量低、产出程度低,煤层气井生产实践中表现为开始阶段产气量增长快,产气高峰时间短,稳产气量低、生产时间长,煤层气开发难度大。研究结果为高阶煤的煤层气抽采效果评价提供参考依据。  相似文献   

19.
超破裂压力注气开发煤层甲烷探讨   总被引:6,自引:0,他引:6  
中国大多数煤层气藏具有低压、低渗、低饱和等特点,采用常规增产改造和降压开发技术难于奏效。文章提出了超破裂压力注气技术开发该类低渗煤层气藏的设想,将一次开采与增产改造、提高采收率紧密结合,在开发初期即实施提高采收率措施。研究表明,煤层甲烷解吸-扩散-渗流过程受多种因素影响,在煤层气开发中,一方面需要提高煤层渗透率,另一方面还必须促进甲烷高效快速解吸。超破裂压力注气开发煤层甲烷的机理主要包括降低甲烷分压诱发甲烷解吸,通过竞争吸附置换解吸甲烷,诱发微裂隙形成和天然裂缝延伸,补充能量,防止裂缝闭合和水相圈闭,降低应力敏感损害。超破裂压力注气方式包括注气吞吐和气驱,注气吞吐适用于单井开发,气驱则要形成注采井网。要针对注气开发煤层气特点,选用合理的注气和完井方式,形成注气开发煤层气配套技术,提高煤层甲烷产量和采收率。  相似文献   

20.
页岩气纳米级孔隙渗流动态特征   总被引:16,自引:0,他引:16  
页岩储层的孔隙结构比较复杂,孔隙直径较小,纳米级孔隙普遍发育,大量的页岩气是以吸附态储存于页岩中的。页岩气开采时,纳米级的孔隙结构和吸附气解吸会引起孔隙结构改变,从而使页岩渗透率产生动态变化。为此,基于毛细管模型,引用固体变形理论,研究了气体分子在纳米级孔隙中渗流动态特征。结果表明:孔隙直径小于10 nm时,受扩散与解吸作用的影响,渗透率随储层压力下降呈现出先增加后减小的趋势;孔隙直径越大,渗透率拐点压力值越低,渗透率下降速度越快;孔隙直径大于20 nm,气体分子间的扩散作用对渗流影响较小;压力较低(小于10 MPa)时,气体渗流受分子扩散效应作用明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号