首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
中国致密砂岩气资源丰富,勘探潜力大,但已有的开发实践证实开发面临巨大挑战。为了从微观角度深入认识致密砂岩气成藏机理,气水分布,提高致密砂岩气采收率,基于孔隙网络模型,开展了致密砂岩气充注数值模拟研究,探讨了微观尺度下致密砂岩气充注机制,并分析了充注过程中气水的赋存特征,建立了不同温度压力条件下毛细管力学模型,指出了不同地质条件下含气性差异与变化的特征。研究结果表明:(1)毛细管压力是孔隙内流体与孔隙壁面之间的分子间相互作用力的宏观表达,相较常温常压,在高温高压地层中毛细管压力更小,成藏下限可能更低;(2)由于孔隙结构的非均质性特征,并非所有大孔隙都被天然气充注,与小孔隙或者窄喉道相连的大孔隙可能无法被充注而呈现局部高含水特征,开发过程中,这部分水作为自由水被产出;(3)孔隙网络模拟揭示了岩心尺度上的致密砂岩微观含气性增长机制与气水分布形成过程,有利于深入认识致密油气成藏机理,以及气水分布。结论认为,基于孔隙网络充注模拟技术,在实验室条件下揭示了微观气水分布形成过程和致密砂岩气充注机理,对指导致密砂岩气开发具有重要指导和借鉴意义。  相似文献   

2.
石油充注下限是致密油成藏研究的基础。鄂尔多斯盆地富县地区长8层段致密砂岩储层微观结构十分复杂,储层微观结构是影响石油充注的关键。利用场发射扫描电镜和CT方法定量研究致密砂岩储层孔隙-喉道特征;采用力学方法、录井分析法以及有效孔喉法综合分析致密储层充注物性下限与充注孔喉下限。研究结果表明,致密储层孔隙大小以纳米和亚微米级为主,孔隙平均半径为1.2 μm,喉道平均半径为0.1 μm,属于细孔-微细喉储层。经计算,长8致密砂岩储层孔隙度充注下限为4.5%,渗透率充注下限为0.04×10-3 μm2,源储界面储层孔喉充注直径下限为15.77 nm,储层内部孔喉充注直径下限为24 nm。综合分析认为油气能充注纳米级孔,根据压实及胶结程度由弱至强,最终石油分别以油珠状、喉道状和薄膜式赋存。   相似文献   

3.
致密油藏活性水采油机理   总被引:2,自引:0,他引:2  
注活性水相较于注水有诸多优势,在特低渗、超低渗油藏的实际开发中效果较好,因此可以借鉴到致密油藏的开发上。针对鄂尔多斯盆地X区块致密油储层,选取不同渗透率的岩心进行注水和注活性水驱油物理模拟实验,结合核磁共振技术,分析致密油岩心的微观孔隙结构、可动流体饱和度以及不同渗透率等级岩心的采出程度、残余油分布等。研究表明:大部分致密油油藏的孔隙为亚微米、微纳米孔,可动流体主要赋存于大于1μm的孔隙中;注活性水效果好于常规水驱,注活性水能够有效地动用微纳米孔中的原油;渗透率越低注活性水的驱油效果越明显,对于渗透率低于0.6×10~(-3)μm的致密油藏,建议采用注活性水开发。  相似文献   

4.
低渗致密砂岩纳米-微米尺度孔喉发育,微观非均质性强,渗流机理复杂,现有物理实验方法难以准确评价。采用基于数字岩心理论的微观流动模拟方法来分析低渗致密砂岩中天然气的渗流规律。以川西地区沙溪庙组砂岩样品为基础,利用CT扫描建立目标岩样三维数字岩心,通过孔喉识别、形态简化及喉道调整,构建了包含不同孔喉分布的低渗致密砂岩三维孔隙模型;考虑天然气在纳米-微米孔喉中输运机制的复杂性,建立了耦合Darcy渗流、气体滑脱和Knudsen扩散的流动控制方程,并结合孔隙模型对其进行离散求解。开展流动模拟,评价不同孔隙压力下各输运机制对天然气产出运移的影响。结果表明:低渗致密砂岩中喉道越小、孔隙压力越低,气体流动非线性越强;在孔隙压力高于10 MPa范围,天然气在平均喉道半径大于0.1 μm的砂岩孔隙空间中的流动基本满足Darcy渗流;而对于平均喉道半径小于0.1 μm的致密砂岩,孔隙压力低于10 MPa后气体滑脱和Knudsen扩散是气体运移中重要机制,对天然气生产的影响不可忽略。  相似文献   

5.
应用铸体薄片观察、场发射扫描电镜、高压压汞、恒速压汞及核磁共振等实验技术,开展储层微观孔喉结构和地层水微观赋存状态研究。研究认为鄂尔多斯盆地天环北部盒8段—山1段储层以粒内溶孔、晶间孔和残余粒间孔为主要孔隙类型,分别占33%、31%和16%,孔隙半径分布在80~300 μm之间,平均值为154.18 μm,喉道半径分布在0.01~1.60 μm之间,主流喉道半径平均值为0.55 μm,为微米级孔隙和纳米级喉道,喉道半径是储层渗流能力的主要控制因素。地层水具有束缚水、毛管水、自由水和吸附水4种微观赋存状态,大孔喉的粒间孔和溶蚀孔内,低压充注呈气水混合状,含气量较高,赋存自由水,较高充注压力下为纯气残余少量膜状吸附水;中小孔喉控制的粒间孔和溶蚀孔内,低压充注下呈现气水混合,含气量低,赋存大量毛管水,高压充注下呈气水混合或纯气,含气量高,赋存少量毛管水;微小孔喉的粒间孔内,低压充注下为纯水,高压充注为气水混合,但含气量低,赋存束缚水;晶间微孔内,低压和较高压力充注下均以纯水为主,为束缚水。4种地层水微观状态的孔喉半径截止值分别为0.10 μm、0.26 μm和0.28 μm,渗透率截止值分别为0.21×10-3 μm2、0.51×10-3 μm2和0.55×10-3 μm2,孔隙度截止值分别为5.86%、7.99%和8.18%。启动压力梯度和小于0.10 μm的孔喉是地层水微观赋存状态和残余含水饱和度的主控因素,在天然气成藏过程中,随气驱水强度增大,大孔喉控制的地层水百分比逐步降低。研究区自由水占50%,毛管水占18%,束缚水占30%,吸附水占2%,残余含水饱和度为32%左右。  相似文献   

6.
针对致密砂岩储层微观孔隙结构复杂导致孔隙空间展布和渗流机理认识不清的问题,以莺歌海盆地乐东10区高温高压特低渗透致密砂岩储层为例,利用三维高精度Micro-CT扫描、纳米级电镜扫描等图像分析技术对致密砂岩储层的孔隙空间展布规律进行定量表征,建立基于数字岩心的双尺度三维孔隙结构模型,并基于双尺度孔隙耦合渗流模拟方法确定致密砂岩储层渗流机理。研究结果表明:①乐东10区致密砂岩储层主要发育3种尺度范围的孔隙,孔隙半径分别为0.070~3,3~40,40~300 μm;②在以长石溶孔、岩屑粒间孔为主的微孔隙尺度下,孔隙与喉道半径差异较小,渗流空间以微孔隙和喉道构成,表现为小孔小喉渗流模式,在气水两相渗流过程中水相渗透率下降快;③在由较大粒间溶孔、铸模孔与次级尺度孔隙共同组成的双尺度孔隙结构模型中,呈大孔小喉渗流模式,水相渗透率下降较缓。  相似文献   

7.
致密储层微观结构影响着原油在储层中的充注行为,制约着致密油的富集和分布规律。基于致密油充注模拟、恒速压汞、扫描电镜与核磁共振等实验,文章定量表征致密储层的原油充注行为和孔喉结构特征,剖析成岩作用、自生矿物生长形态以及孔喉结构特征对原油在致密储层中充注行为的影响。研究表明,原油充注过程可分为3个阶段:充注启始阶段、快速充注阶段和缓慢充注阶段,这是充注过程中驱替压力与毛管力的动平衡以及主要储集空间分布的结果。其中,快速充注阶段又存在两种增长模式,即持续增长模式和跳跃增长模式,这两种模式揭示了主流喉道半径分布特征的差异。通过分析发现,压实、胶结、溶蚀、自生矿物生长等成岩作用极大程度上影响着储集空间和喉道半径的尺寸和分布,决定了致密储层品质的优劣。故此,在油源充足的条件下,具备足够的驱动力和品质优良的储层,是致密油富集的关键,而开启的断层/微裂隙附近的砂体正是满足这些条件的有利区带。  相似文献   

8.
致密储层岩石渗透率低,储集空间受其微纳米级孔隙控制,毛管力作用显著增强。认识油气的微观充注特征是分析运聚成藏的基础。利用自研的岩心流体驱替在线三维显微成像系统,开展致密储层样品油充注过程观测,提出样品整体和孔隙两级的含油特征综合定量分析方法。以相同流程的驱替在线核磁共振测试为对照,揭示不同时刻在线二维直接数字化摄影(Digital Radiography, DR)的平均差值,可用于评价样品整体含油量变化;基于高精度孔隙网络抽提的孔隙级流体饱和度计算方法,实现了图像可分辨的孔隙与孔喉油充注程度的定量评价。通过多层次数据、不同方法的组合,可满足不同研究对动态特征捕捉、孔隙分辨能力及成像视野等差异化需要。分析结果表明,鄂尔多斯盆地不同致密储层两块岩石样品的含油饱和度随注油量的增加,均呈现开始上升较快、后期减缓的特点;相同注入流速下,相对高渗样品油充注初期含油饱和度上升速度更快,最终含油饱和度较高;随着注油量的增加,较高渗样品的大孔隙含油饱和度持续增加,低渗样品大孔隙的含油饱和度呈U形变化,表现出油、水反复占据孔隙的特点。  相似文献   

9.
核磁共振技术能够实现岩石微米—纳米级孔隙高精度、快速、无损测量,为致密砂岩孔隙结构定量表征提供新的手段。基于压汞数据刻度核磁共振T_2谱的方法,针对致密砂岩压汞进汞饱和度不足100%而造成的测不准问题,提出采取压汞曲线和T_2谱从右边界的最大孔隙向左侧小孔隙累加,选定右累加曲线中压汞测量的孔喉半径范围作为核磁共振孔喉半径的可对比区间,利用纵向插值法和最小二乘法构建T_2谱转换的孔喉半径分布曲线。选择临清坳陷东部石炭系—二叠系致密砂岩气储层为研究对象,利用改进方法获得核磁共振T_2谱和孔喉半径转换系数及孔喉半径分布,定量研究了储层孔隙结构特征,并结合岩石薄片、扫描电镜观察,探讨了致密砂岩孔隙结构差异成因及储层有效性。结果表明,利用改进方法得到的核磁共振孔喉半径曲线与压汞曲线吻合度高,显著提高了致密砂岩核磁共振测试的准确度。研究区石炭系—二叠系致密砂岩孔喉半径主要分布于0.002~2μm,总体为亚微米—纳米级孔隙,但不同类型砂岩孔喉半径分布具有明显差异:岩屑石英砂岩富硅质、贫塑性岩屑和杂基,总体以亚微米级孔喉为主,含微米级孔喉;岩屑长石砂岩和长石岩屑(富石英)砂岩石英含量高、塑性岩屑和杂基含量较低,为亚微米—纳米级孔喉(纳米级占优);而长石岩屑(富岩屑)砂岩和岩屑砂岩贫石英、富塑性岩屑和杂基,主要是小于0.05μm的纳米级孔喉。微观岩石学组分是控制孔隙结构差异和储层有效性的关键因素,储层质量宏观上可能受控于沉积微相,粗粒和细粒的点砂坝/河床滞留微相岩屑石英砂岩是最有利储层,细粒的点砂坝微相岩屑长石砂岩、分流河道和障壁砂坝长石岩屑(富石英)砂岩是较有利储层,而潮坪相长石岩屑(富岩屑)砂岩、岩屑砂岩均是孔、渗性极差的无效储层。  相似文献   

10.
库车坳陷是近年来塔里木盆地深层致密砂岩气勘探的重要领域。通过开展物性测试、铸体薄片镜下鉴定、常规压汞实验、微米CT扫描实验及包裹体测试,分析库车坳陷迪北致密砂岩气藏下侏罗统阿合组致密砂岩储层孔隙微观结构特征,结合测井解释结果和包裹体实验,探讨孔隙微观结构对致密砂岩气富集的控制作用。结果表明:库车坳陷下侏罗统阿合组致密储层主要发育溶蚀孔隙(包括长石和岩屑等粒内溶孔、胶结物溶孔)和微裂缝,残余粒间孔隙较少。阿合组致密储层孔隙微观结构可分为3类:第一类主要发育在粗砂岩中,孔喉分选差、孔喉半径大但孔喉比小,孔喉系统为毛细管束状,具有较好的渗流能力;第二类主要发育在粗-细砂岩中,孔喉分选较差,孔喉半径小于第一类储层但孔喉比大,孔喉系统为墨水瓶状;第三类主要发育在细-粉砂岩中,孔喉分选相对较好,孔喉半径小于第二类储层,孔喉系统也表现为墨水瓶状,但渗流能力差。第一类孔喉系统可形成天然气在致密储层中的运移通道;第二类孔喉系统是致密砂岩气主要的储集空间,有利于致密砂岩气的聚集;第三类储层为无效储层,无天然气充注。  相似文献   

11.
苏里格气田是典型的致密砂岩气藏,其气水分布特征复杂,对产能的影响较大。应用铸体薄片、高压压汞、相渗等多种实验测试资料,分析了研究区的孔喉结构下限及对气水分布的影响。研究结果表明,苏48区块孔隙类型主要发育岩屑溶孔、粒间孔和晶间孔,苏120区块孔隙类型以岩屑溶孔、晶间孔为主;研究区气水的可动孔喉下限为0.003 8μm,水膜厚度为0.002μm,毛细管水影响的孔喉半径区间为0.003 8~0.050 0μm;气水分布特征在宏观上主要受岩性控制,在微观上受孔喉分布的影响;储层孔渗特征对气水分布的影响较为复杂。  相似文献   

12.
孔喉大小是评价储层质量的重要因素,而致密砂岩储层孔喉分布较强的非均质性使其表征难度较大。在分析目前孔喉表征方法的基础上,通过场发射扫描电镜、高压压汞和恒速压汞等实验,研究了鄂尔多斯盆地陇东地区延长组7段致密砂岩储层孔喉大小分布特征及其对储层物性的控制作用。结果表明:储层孔隙类型主要为剩余粒间孔、溶蚀孔、微孔和少量微裂缝;高压压汞表征孔喉的大小分布在0.014 8~40μm,大于1μm的孔喉分布较少;恒速压汞测试表明对于不同物性的样品其孔隙半径分布相对集中,主要分布在80~350μm;喉道半径则表现出较强的非均质性,分布在0.12~30μm;高压压汞和恒速压汞结合有效地表征了致密砂岩储层整个孔喉分布特征,孔径分布在0.0148~350μm。储层渗透率主要由比例较小的大孔喉(大于R_(50))所控制,对于渗透率大于0.1 mD的致密砂岩,其渗透率主要由微孔和中孔所控制,而小于0.1 mD的致密砂岩则主要由纳米孔和微孔所控制;此外,小孔喉的比例随着渗透率的减小而增加,虽然其对渗透率影响较小,但对储层储集性的影响却十分重要。  相似文献   

13.
低渗砂岩气藏的孔隙结构与物性特征   总被引:2,自引:0,他引:2  
根据毛细管束模型,在分形几何、表面与胶体化学和气体分子运动论的基础上研究了低渗砂岩气藏的孔隙结构与物性特征之间的定量关系。孔隙结构特征表现为孔喉半径及其高宽比小,分形维数,毛细管弯曲度和孔-喉径比大。物性特征表现为渗透率低并对应力敏感、毛细管压力和束缚水饱和度高,但原生水饱和度则可能很低,纵向气、水分布异常——气、水分界模糊和可能气、水倒置,自由分子流动与粘滞流动共存以及气高速非达西流动和水低速非达西流动显著。从已建立的理论关系式来看,各种结构参数对物性参数的影响不尽--致,如孔喉半径对渗透率的影响比对毛细管压力的影响大,而分形维数对毛细管压力比对渗透率的影响要大。水膜厚度不影响孔喉有效尺寸,仅通过改变润湿性影响气、水分布,从而影响气、水的相渗透率。在低渗气藏中因孔喉很小,分子自由流动明显,无论在室内或地下均需校正滑脱效应。  相似文献   

14.
为分析致密砂岩储层多尺度微观孔喉分布对可动流体的控制作用,以鄂尔多斯盆地伊陕斜坡东南部三叠系延长组长6、长7和长8油层组为例,将高压压汞与核磁共振技术结合,研究致密砂岩储层多尺度微观孔喉分布特征,将离心实验与核磁共振T2谱分析技术相结合,探讨致密砂岩储层可动流体的分布特征,两者结合研究致密砂岩储层孔喉分布对可动流体的控制作用。研究区延长组致密砂岩储层微观孔喉半径分布范围宽,分布在0.6~3 050.8 nm,主体分布在10~500 nm,表明该致密砂岩储层主要发育微、纳米级孔喉,主体为纳米级孔喉;致密砂岩储层中可动流体饱和度为9.83%~25.64%,平均值为17.53%,普遍较低。储层孔隙度和储层渗透率与可动流体孔隙度具有较好的正相关性,表明储层物性条件对致密砂岩储层可动流体分布具有较好的控制作用;大于50 nm孔喉占全部孔喉比率、大于100 nm孔喉占全部孔喉比率、最大孔喉半径、峰值孔喉半径等参数与储层可动流体孔隙度均具有较好的正相关性,表明储层中相对较大孔喉,尤其大于100 nm孔喉的分布对致密砂岩储层可动流体含量具有重要的控制作用;孔喉的分选系数与可动流体含量表现为正相关,这主要与致密砂岩储层中孔喉半径分布较宽且分选好的致密砂岩主要以细小孔喉为主有关。   相似文献   

15.
文中利用铸体薄片、扫描电镜、高压压汞和恒速压汞技术,定量研究了四川盆地下志留统小河坝组致密砂岩储层的孔喉结构特征。通过联合高压压汞和恒速压汞实验,有效表征了小河坝组砂岩的总孔喉大小,其中孔隙半径为50~260μm,喉道半径为0.004~50.000μm。总体而言,致密砂岩渗透率(K)主要受控于小部分(小于40%)较粗的孔喉。对于渗透率良好的致密砂岩(K>0.1×10^-3μm^2),较大的微孔和中孔是渗透率贡献的主体;反之,渗透率则主要受控于较大的纳米孔。此外,尽管大量小孔喉(半径小于0.1μm)对储层孔隙度和渗透率都有一定贡献,但对前者贡献远大于对后者贡献。  相似文献   

16.
致密油储层孔隙度和渗透率均较低,其微米级孔隙网络系统内石油赋存状态是致密油成藏地质研究中亟待解决的核心问题之一。采用油气驱替系统与X射线微米CT扫描系统联用,通过对3 mm和5 mm直径致密砂岩干岩心、饱和碘化钾(KI)溶液及油驱替KI溶液后致密砂岩岩心在线CT扫描及数据重构,三维展示了致密砂岩微米级孔隙网络系统中石油的赋存状态。研究发现孔隙半径10 μm以上孔隙的连通性较好,是石油聚集的优势孔隙网络系统,致密砂岩62.9%~84.1%的石油聚集于半径在10~60 μm之间的孔隙内;孔隙半径小于10 μm的孔隙数量多,但其在空间上多呈孤立状分布,该部分孔隙的石油充满度较低,只聚集了致密砂岩内6.8%~20.0%的石油。致密砂岩含油饱和度随孔径呈阶梯状增长,半径小于10 μm、10~60 μm和60~80 μm的孔隙的含油饱和度分别为10%~40%,30%~75%,40%~75%。致密砂岩微米级孔隙网络系统石油的赋存与孔隙的尺寸、成因类型及空间分布特征有关。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号