首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
基于致密砂岩气藏中气体非达西渗流特征,考虑应力敏感效应的影响,推导了致密砂岩气藏在拟稳态流动阶段的垂直裂缝气井产能方程,并得到了气井无阻流量计算式。实例计算结果表明:受到应力敏感效应影响,气井产能向压力轴弯曲,在相同的生产压差下,气井产量比不考虑应力敏感效应的产量低;应力敏感系数越大,产能曲线弯曲越早、弯曲度越大,气井产量越低,产量下降率越大;应力敏感系数越大、基质有效渗透率越低、裂缝半长越小、裂缝导流能力越小,垂直裂缝气井的产量越小。为保证垂直压裂气井的开发效果,压裂作业应尽量布置在基质渗透率较高的区域。  相似文献   

2.
页岩气体积压裂水平井产能影响因素研究   总被引:2,自引:0,他引:2  
针对页岩气开发中体积压裂水平井的产能影响因素问题,利用数值模拟技术,在考虑页岩气等温吸附和解吸条件下,建立有限导流页岩气体积压裂水平井开采模型。通过研究天然微裂缝渗透率、基质-微裂缝sigma 系数、储层改造体积、人工裂缝导流能力、诱导裂缝导流能力、诱导裂缝密度以及非达西因子等因素对产量的影响,得到人工裂缝导流能力、天然微裂缝渗透率和改造体积大小对累计产气量的贡献率分别为28. 66%、22. 50%、22. 35%,是影响单井产能的最主要的3 大因素。气井产能优化设计对页岩气储层改造具有一定指导意义。  相似文献   

3.
页岩气藏低孔、特低渗、吸附气含量比例高、人工压裂裂缝网络复杂等诸多不同于常规气藏的特点,使页岩气藏压裂水平井与常规气藏在渗流机制及产能动态分析方法上存在很大差异。数值模拟作为产能动态分析方法之一,可以有效地模拟页岩气藏独特的属性参数及复杂的渗流特征。综合考虑页岩气吸附解吸、扩散及渗流,应用油藏数值模拟方法,建立了页岩气双重介质压裂水平井模型,分析了吸附气、天然裂缝、人工裂缝参数等对页岩气井动用范围、动用形状及生产动态的影响。结果表明,页岩气藏水力压裂裂缝和天然裂缝复杂的裂缝网络系统对页岩气井的动用形状有着重要影响,人工裂缝展布形态、人工裂缝参数(裂缝半长和导流能力)对页岩气藏的开发效果具有较大影响。  相似文献   

4.
非线性渗流下低渗气藏压裂井产能评价   总被引:3,自引:0,他引:3  
气体渗流受启动压力梯度、滑脱效应和应力敏感等多个因素影响,以前的研究没有综合考虑以上因素。针对低渗气藏渗流特征,根据气井压裂后气体渗流规律的变化,基于稳定渗流理论,建立了综合考虑启动压力梯度、滑脱效应和应力敏感等因素的低渗气藏有限导流垂直裂缝井产能预测模型,并利用该模型分析了启动压力梯度、滑脱效应、渗透率变形系数、地层污染等对低渗气藏压裂井产能的影响。研究表明:随着启动压力梯度和应力敏感的增大,气井产能呈近线性下降趋势,其中应力敏感的影响程度更大;随滑脱效应的增大,气井产能呈近线性上升趋势;在低渗气藏压裂参数设计中,增加裂缝长度比增加裂缝导流能力更重要,一定裂缝长度下存在一个最佳的裂缝导流能力;污染带半径增大和污染带渗透率降低都可使气井产能下降,下降幅度随着污染带半径增大和污染带渗透率降低而增大。   相似文献   

5.
水力压裂是实现页岩储层有效开发的重要技术手段,而准确预测页岩气藏压裂井产量是保证页岩气高效开发的基础。以油气藏数值模拟和数值计算方法为工具,在考虑页岩基质块解吸扩散和窜流条件下,建立了页岩气藏气水两相压裂渗流数学模型,推导了数值计算模型,并研制了页岩气藏压裂产能模拟器,定量分析了裂缝参数、物性参数和解吸扩散参数对页岩气压裂井产量的影响。研究表明:水力压裂能有效提高单井产量,是页岩气藏高效开发的有效措施;压裂裂缝导流能力和天然裂缝渗透率是页岩气开采的主控因素,日产气量和日产水量随压裂裂缝导流能力和天然裂缝渗透率增加而增加;基质渗透率和扩散系数对产量的影响相对较小。  相似文献   

6.
为建立合理的页岩气体积压裂水平井产能模拟模型,同时研究压裂裂缝参数及地层性质对压裂井产能的影响,通过油藏数值模拟的方法,以某口页岩气井基本参数为基础,利用椭球体状的线网模型模拟复杂的裂缝网络,并利用不可流动油中的溶解气模拟页岩中的吸附气,建立页岩气体积压裂水平井的产能预测模型。在建立模型的基础上分析页岩气体积压裂水平井储层改造体积、网状裂缝导流能力、改造体积的复杂程度等参数对产能的影响,并研究了地层渗透率非均质性等对改造井的影响。结果表明,所建模型能高效模拟实际页岩气体积压裂水平井产能。研究显示改造体积越大,裂缝的导流能力越强,主、次裂缝的间距越小,页岩气体积压裂水平井的产能越高。地层渗透率各向异性对气井产能的影响较小。所建模型对页岩气体积压裂开发效果的预测有积极意义。  相似文献   

7.
产能模拟是页岩气水平井重复压裂优化设计的重要环节。对于页岩气水平井而言,初次压裂形成的复杂网络以及随生产进行而被扰动的储层应力场和压力场使得重复压裂产能模拟更加困难。根据页岩储层压后多重孔隙介质特征,考虑页岩气在开采过程中"有机质干酪根—无机质纳米孔隙—天然裂缝"的多尺度空间流动行为以及储层参数和水力裂缝导流能力随生产的动态变化,建立页岩气水平井重复压裂产能预测的数学模型。基于矿场生产数据的历史拟合验证该模型的可靠性,探讨气井初次压裂后有效应力和水力裂缝渗透率变化规律,为重复压裂时间节点优化提供参考。重复压裂模拟结果表明,重复压裂通过增加原有水力裂缝的导流能力,再次为页岩气的流动提供快速通道,提高页岩储层吸附气的采出程度。  相似文献   

8.
由于页岩气藏的渗透率极低,一般小于0.1×10-3μm2,对其实施多级分簇大规模体积压裂是目前改善储层导流能力、提高储层产能的关键技术。以涪陵页岩气田某区块为例,基于线网模型,文中提出了一套系统的页岩气藏新井压裂规模优化设计方法。根据老井压裂及试产数据,利用主成分分析法,筛选影响气井产能的关键压裂参数(压裂级数、裂缝导流能力和缝网带长)。采用响应面方法对区块新钻井的压裂施工进行优化设计,得到最佳新井压裂参数:压裂级数3,缝网带长120 m,裂缝导流能力45×10-3μm2·m。通过对老井压裂参数的统计分析,优化设计新井的体积压裂规模,可以最大程度发挥体积压裂的增产效果,实现页岩气藏的高效开发。  相似文献   

9.
气井压裂产生的垂直裂缝中存在非达西渗流,渗流阻力显著增大,产能明显降低。在建立考虑了非达西渗流的裂缝有效渗透率计算模型基础上,建立了气井产能计算新模型,改进了基于支撑剂数的压裂气井优化设计方法。计算表明,裂缝中存在非达西渗流时,裂缝有效渗透率大幅度减小,设计所得最优缝长明显缩短,缝宽明显增加,压裂气井产能显著降低。气井压裂设计时,以考虑非达西渗流的气井产能为基础,可以更准确的得到最优压裂设计参数,从而更好地指导现场压裂施工。  相似文献   

10.
页岩气储层渗透率极低,必须经过压裂改造才能形成有效产能,大量狭小自支撑裂缝在天然气解吸及流动中具有重要作用。页岩气储层生产周期长,人工裂缝导流能力对裂缝变形极其敏感。研究结果表明,页岩气储层具有一定的蠕变特性,并随着粘土含量的增加而增强。压裂改造后,储层会产生大量裂缝,裂缝闭合蠕变是蠕变形变的主要形式。裂缝的存在会使储层蠕变速率大幅度提高,并对裂缝导流能力产生不可忽视的影响。裂缝闭合蠕变速率与裂缝界面之间、裂缝界面与支撑剂间的相互作用有关,并与基质蠕变速率成正比。压裂改造形成的裂缝网络越发育、单裂缝宽度越小,蠕变对裂缝导流能力的影响越大。在页岩气数值模拟中,考虑裂缝闭合蠕变的累积产量与未考虑裂缝闭合蠕变的累积产量相差较大。同时,在地应力计算、储层可改造性、支撑剂和施工参数优选以及生产方式的选择等方面也应考虑蠕变的影响,保持流体压力有利于减小蠕变形变,维持裂缝导流能力,提高气井产能和采收率。  相似文献   

11.
���ҳ����ˮƽ�����ѹ�Ѽ���   总被引:2,自引:0,他引:2  
??Deep shale gas reservoirs buried underground with depth being more than 3 500 m are characterized by high in-situ stress, large horizontal stress difference, complex distribution of bedding and natural cracks, and strong rock plasticity. Thus, during hydraulic fracturing, these reservoirs often reveal difficult fracture extension, low fracture complexity, low stimulated reservoir volume (SRV), low conductivity and fast decline, which hinder greatly the economic and effective development of deep shale gas. In this paper, a specific and feasible technique of volume fracturing of deep shale gas horizontal wells is presented. In addition to planar perforation, multi-scale fracturing, full-scale fracture filling, and control over extension of high-angle natural fractures, some supporting techniques are proposed, including multi-stage alternate injection (of acid fluid, slick water and gel) and the mixed- and small-grained proppant to be injected with variable viscosity and displacement. These techniques help to increase the effective stimulated reservoir volume (ESRV) for deep gas production. Some of the techniques have been successfully used in the fracturing of deep shale gas horizontal wells in Yongchuan, Weiyuan and southern Jiaoshiba blocks in the Sichuan Basin. As a result, Wells YY1HF and WY1HF yielded initially 14.1×104 m3/d and 17.5×104 m3/d after fracturing. The volume fracturing of deep shale gas horizontal well is meaningful in achieving the productivity of 50×108 m3 gas from the interval of 3 500–4 000 m in Phase II development of Fuling and also in commercial production of huge shale gas resources at a vertical depth of less than 6 000 m.  相似文献   

12.
页岩气体积压裂缝网模型分析及应用   总被引:2,自引:0,他引:2  
对低渗透页岩储层进行体积压裂改造以形成复杂裂缝网络是获得页岩气经济产能的关键,压裂改造体积和缝网导流能力是评价体积压裂施工效果的关键指标,同时对压裂优化设计、压后产能预测及经济评价也具有重要意义。为此,在分析页岩气体积压裂特点的基础上,对两种主要页岩气体积压裂缝网模型的假设、数学方程及参数优化方法进行了比较分析,并结合美国Marcellus页岩区块现场参数对页岩储层压裂方案进行了优选。结果表明:离散化缝网模型及线网模型均能有效表征复杂缝网几何特征,模拟缝网的扩展规律和缝网中压裂液流动及支撑剂运移,获得缝网几何形态参数,可优选压裂施工方案;天然裂缝发育的页岩层是体积压裂改造的重点,水平地应力差越小则越易形成复杂缝网,施工排量越大,压裂液泵入总量越大,则储层改造体积范围越大,缝网导流能力越高,页岩气产能就越高。  相似文献   

13.
页岩气密切割分段+高强度加砂压裂新工艺   总被引:1,自引:0,他引:1  
目前依靠大型水力压裂工艺技术已经实现了四川盆地长宁地区埋深3 500 m以浅页岩气的规模开发,但随着主体工艺参数的定型,增产效果提高的幅度趋缓,而同期北美地区则依靠缩短簇间距、提高支撑剂加量实现了页岩气单井产量的大幅度增长。为了给长宁地区页岩气压裂工艺参数优化提供可靠的实践依据,在应用诱导应力及水平井多段多簇产能计算模型分析密切割分段+高强度加砂压裂新工艺提高产能机理的基础上,探讨了压裂增产技术的主要工程因素,根据该区的地质参数制定了压裂新工艺的先导性试验方案并开展了现场试验,然后结合生产实际效果和试验结果对压裂工艺参数进行了优化。研究结果表明:①缩短主裂缝间隔、增加诱导应力干扰程度、提高人工裂缝对页岩储层的改造程度是密切割分段工艺的技术关键,提高支撑剂加量、降低支撑剂嵌入及破碎对裂缝导流能力衰减的影响程度、确保支撑裂缝具备足够的长期导流能力是高强度加砂大幅度增产的内因;②长宁地区优化后的新工艺实施参数——分段簇间距介于15~20 m,加砂强度介于2.0~2.5 t/m,用液强度介于30~35 m~3/m。结论认为,新工艺提高了长宁地区页岩气井单井产量及开发效益,为提高该区页岩气井的综合开发效益提供了技术支撑。  相似文献   

14.
石英砂用于页岩气储层压裂的经济适应性   总被引:1,自引:0,他引:1  
四川盆地长宁—威远地区页岩气储层最小主应力介于44~68 MPa,一直使用可在高闭合压力下保持高导流能力的40~70目陶粒作为主要的支撑剂,但用量大、成本高。为了进一步降低支撑剂的成本,在采用气藏数值模拟方法论证储层所需的支撑裂缝导流能力的基础上,利用页岩气井生产分析结果和人工裂缝模拟结果研究储层作用在支撑剂上的有效应力、有效应力的加载速度和支撑剂的铺置浓度,提出了适合该区页岩气井压裂支撑剂导流的实验方法,评价了石英砂的导流能力及其对页岩气产能的影响,并利用该方法进行了支撑剂的筛选和现场试验。结果表明:(1)页岩基质渗透率小于6.0×10-4 m D时,主裂缝导流能力介于0.8~1.0 D·cm、分支裂缝导流能力介于0.05~0.10 D·cm即可满足生产需求;(2)当主裂缝垂直于最小主应力方向、分支裂缝垂直于主裂缝时,该地区页岩储层作用在主裂缝内支撑剂上的有效应力最大值为54 MPa,作用在分支裂缝内支撑剂上的最大有效应力约为69 MPa;(3)对标准支撑剂导流能力评价实验方法进行了修改——应力加载速度为1.0 MPa/min,支撑剂铺置浓度为2.5 kg/m2,最高加载压力设定为70MPa;(4)优选70/140目石英砂能够满足该区页岩气井压裂需求。在该区2个平台4口井的应用效果表明,将石英砂比例从30%提高到70%~80%,单段产气量无明显变化,单井可以节约支撑剂成本60万元~100万元,如果石英砂本地化,则成本可进一步降低。结论认为,该项成果为在基质渗透率极低的致密油气储层中采用石英砂替代陶粒以降低成本提供了技术支撑。  相似文献   

15.
川渝地区页岩气储层在压裂过程中频繁出现套管变形、机械分段工具无法下入等井下复杂情况,以及因尾追砂量受限导致近井地带导流能力低,制约了页岩气水平井的返排效果及投产产量。为此,针对以桥塞为主的机械分段工艺在川渝页岩气现场应用中的制约状况,提出了应用水平井缝内砂塞分段工艺来解决以上难题的方法。该工艺核心技术在于缝内砂塞的成功封堵转层并在返排生产过程中保持裂缝长期的高导流能力,而裂缝长期的高导流能力是决定该工艺增产效果的关键。将Hertz接触及分形理论引入到砂塞强度的分析中,结合室内工程模拟实验结果,建立了支撑剂缝内砂塞接触力学模型,从强度准则及摩擦等方面提出了缝内砂塞稳定性判据,完善了缝内砂塞渗透率分形模型。实验结果表明:(1)在返排初期砂塞的稳定性主要受到流体冲刷作用的影响,应严格控制排液速率;(2)在生产后期砂塞的稳定性主要受到裂缝闭合应力及流压的影响,适当提高支撑剂颗粒的屈服强度对保持裂缝高导流能力具有重要意义。结论认为,缝内砂塞分段工艺可以为页岩气水平井分段多簇体积压裂提供一种新的储层改造手段。  相似文献   

16.
页岩气藏三孔双渗模型的渗流机理   总被引:3,自引:0,他引:3  
为了掌握页岩气储层气体复杂流动的规律,从而高效开发页岩气藏,对页岩气渗流机理进行了研究。借鉴适用于非常规煤层气藏双重孔隙介质模型和考虑溶洞情况的三重孔隙介质模型,基于页岩气储层特征和成藏机理,提出了页岩气藏三孔双渗介质模型;研究了页岩气解析扩散渗流规律,提出考虑储层流体重力和毛细管力影响的渗流微分方程;并利用数值模拟软件对页岩气产能进行了预测。结果表明:基质渗透率和裂缝导流能力是页岩气开采的主控因素,只有对储层进行大规模压裂改造,形成连通性较强的裂缝网络后才能获得理想的页岩气产量和采收率。  相似文献   

17.
考虑页岩储层微观渗流的压裂产能数值模拟   总被引:3,自引:0,他引:3  
考虑页岩微观渗流特征下的产能评价方法有利于提高压后动态分析的准确性和可靠性。压裂改造后页岩储层中,页岩气将在纳米孔隙中通过解吸附、扩散和滑脱流进入天然裂缝,再由天然裂缝流向人工裂缝,常规的产能评价数学模型已无法进行刻画和描述。为此,在考虑页岩气生产过程中基岩纳米孔隙中Knudsen扩散、滑脱流、吸附解吸微观流动特征,天然裂缝应力敏感以及人工裂缝非达西流效应基础上,基于双重介质模型,人工裂缝考虑为离散裂缝,建立了页岩储层基质—天然裂缝—人工裂缝的渗流数学模型,并给出了数值解法。模拟分析了页岩水平井压裂裂缝与储层参数对生产动态的影响。研究表明:吸附解吸效应、Knudsen扩散与滑脱流、天然裂缝渗透率、应力敏感系数、裂缝导流能力、裂缝半长与压裂段数对页岩气井生产具有重要影响。该研究为完善页岩气渗流理论,建立适合页岩气的动态评价模型,准确评价页岩气产能具有重要意义。  相似文献   

18.
加密井的压裂时机直接影响着页岩气藏最终的开发效果。为了有效地指导页岩气藏加密井部署与压裂施工,基于离散裂缝网络模型、有限差分模型及有限元模型,提出了一套页岩气藏加密井压裂时机优化方法:根据页岩气田开发现状及井网加密需求,系统考虑储层非均质性和天然裂缝发育特征,建立渗流—地质力学耦合条件下四维地应力演化及复杂裂缝扩展的多物理场模型,进而模拟加密井水力裂缝扩展形态、加密井及井组开发效果,最终优选出加密井最佳的压裂时机。以四川盆地涪陵页岩气田X1井组为例,利用该优化方法研究了加密井压裂时机和施工参数对其复杂裂缝扩展形态、单井及井组产能的影响规律。结论认为:①该优化方法能够有效模拟老井生产过程中储层物性及力学状态变化,预测压后产量变化,优选加密井压裂参数及压裂时机;②当加密井射孔簇间距减小、每簇施工液量增大时,水力压裂改造体积、裂缝密度增大,压裂后产量提高,但射孔簇间距过小、每簇施工液量过大时,则有可能会导致分支裂缝串通和重叠,降低压裂液效率、影响压裂后产能;③压裂时机越晚,加密井井筒附近分支裂缝越密集,但改造体积越小、初期产量越低;④当目标井组生产36个月进行加密井压裂时,井组累计页岩气产量最高、开发效果最优。  相似文献   

19.
低渗、特低渗油气藏水平井的分段压裂产能模拟计算,一般不考虑储层应力变化对裂缝形态的影响,计算误差较大。将二维诱导应力场计算模型与预估的每段分压时间间隔相结合,计算已存在的人工裂缝对应力场变化的影响,预测后续压裂人工裂缝形态,并根据预测结果建立地质模型,采用三维三相黑油模型计算水平井压后产能,从而建立了考虑人工裂缝存在时应力场变化后的水平井分段压裂产能计算方法。结果表明,在考虑应力场变化时,人工裂缝形态会发生明显变化,由预期的横切裂缝,变成类似于“T”形的人工裂缝,且横切缝部分会远离预定的射孔位置。JM 油藏实例分析得出,考虑8 条横切裂缝存在时水平井产能与不考虑应力场变化时所计算的产能相比, 5 年末的累计产量相差5.6%,验证了进行水平井分段压裂产能计算时考虑实施过程中应力场变化的必要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号