首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
分别以未改性氧化铝(A)、K改性氧化铝(A-K)和Si改性氧化铝(A-Si)为载体,采用饱和浸渍法制备了RZ、RZ-K和RZ-Si 3个NiMo催化剂,并采用Py-IR、XRD、BET、XRF、HRTEM、XPS等技术对其进行了表征。在中型固定床反应器中,以棕榈油为原料,考察了载体表面性质对硫化态催化剂活性及加氢直接脱氧、加氢脱羧基和加氢脱羰基路径选择性的影响。结果表明,A-Si、A、A-K载体表面总酸量和强酸量依次降低;载体表面性质对硫化态(Ni)MoS2活性相形貌结构有较大影响,虽然3个催化剂Mo硫化度相当,但RZ-K的片晶长度较短,层数较低,而RZ-Si片晶长度较长,层数较高,且NiMoS活性相中Ni占总Ni的比 (n(NiNiMoS)/n(Nitotal))按RZ-Si、 RZ、RZ-K顺序依次降低。3个催化剂加氢脱羰基活性相当(320~380℃),但加氢直接脱氧和加氢脱羧基活性不同。适当提高催化剂酸性,增加反应温度和压力对提高加氢脱羧基路径选择性有利;适当降低催化剂酸性和减小活性相晶片,降低反应温度和提高压力对提高加氢直接脱氧路径选择性有利。Si改性导致载体酸性的增强以及相应催化剂Ni-Mo-S活性位的增多,促进了加氢脱羧基反应,与RZ和RZ-K催化剂相比,催化剂RZ-Si的整体脱氧活性提升。  相似文献   

2.
采用高温、不锈钢色谱柱、柱上进样方式、氢火焰离子化检测器(FID),定量分析了伊朗VGO掺炼植物油前后加氢产品中几种长链正构烷烃(C_(15)-C_(18))的含量,研究了伊朗VGO、镇海混合油掺炼不同比例植物油原料、产品组成变化情况。结果表明:随着蜡油掺炼植物油比例的增加,加氢产品中几种长链正构烷烃(C_(15)-C_(18))的质量分数也明显增加,正十六烷、正十八烷的质量分数增幅大于正十五烷、正十七烷增幅。植物油加氢过程发生了不饱和脂肪酸的加氢饱和反应、加氢脱氧反应、加氢脱羧基反应(或加氢脱羰基反应),其中以加氢脱氧反应为主。  相似文献   

3.
以邻甲酚为生物质热解油模型化合物,研究了几种还原型加氢催化剂的催化脱氧性能的差异。采用孔饱和浸渍法制备了Mo/Al2O3、CoMo/Al2O3和CoMoEDTA/Al2O3加氢脱氧催化剂,采用H2 -TPR、XRD对它们进行了表征;在H2气氛下对催化剂进行了还原,并在连续流动固定床加氢微反装置中,考察了邻甲酚在不同还原态催化剂催化下加氢脱氧反应的转化率和产物的选择性。结果表明,在相同的加氢反应条件下,CoMoEDTA/Al2O3的催化活性和稳定性均比Mo/Al2O3和CoMo/Al2O3催化剂高;在反应过程中,Mo/Al2O3催化剂表现出较高的直接脱氧选择性,而CoMo/Al2O3和CoMoEDTA/Al2O3催化剂表现出较高的加氢脱氧选择性。  相似文献   

4.
采用浸渍法制备了一系列负载于γ-Al2O3上的Ni基双金属催化剂,考察助剂金属(Mo,Co,Ce)对Ni基催化剂加氢脱氧反应性能的影响。采用X射线衍射、低温N2物理吸附、NH3程序升温脱附、H2程序升温还原、X射线光电子能谱等表征手段对催化剂进行表征。以正丁醇为模型化合物,在固定床微型反应装置上对催化剂的加氢脱氧性能进行评价,结果表明助剂Ce对催化剂加氢脱氧反应性能的促进作用最为显著,在210 ℃时基本实现正丁醇的完全转化,助剂Mo对C-O键的活化能力更强,对产物正丁烷的选择性明显高于其余助剂。  相似文献   

5.
设计了以γ-Al2O3为酸性载体、非贵金属Ni和Nb2O5为活性中心的催化剂x%Ni-y%Nb2O5/γ-Al2O3(x%为Ni质量分数,x=1,2,3,4,5;y%为Nb2O5质量分数,y=10,20),考察催化剂中Ni、Nb2O5含量和反应工艺条件对该催化剂催化生物燃料含氧中间体1,5-双-(四氢呋喃基)-3-戊酮加氢脱氧反应的影响。结果表明:在反应温度为260℃、H2压力为3MPa、反应时间为24h的条件下,4%Ni-20%Nb2O5/γ-Al2O3催化1,5-双-(四氢呋喃基)-3-戊酮加氢脱氧制备长链烷烃的碳摩尔收率总和达89.6%,其中C11烷烃、C12烷烃和C<...  相似文献   

6.
采用沉积-沉淀法制备了不同焙烧温度的Au/TiO2系列催化剂,采用TEM、XPS、XRD、N2吸附-脱附、ICP以及NH3-TPD等手段表征了Au/TiO2系列催化剂的物化性能。考察了Au/TiO2系列催化剂在木质素模型化合物(愈创木酚)加氢脱氧反应中的催化性能,及反应条件对Au/TiO2-1(焙烧温度为350 ℃)催化愈创木酚加氢脱氧反应性能的影响,并探讨了反应机理。结果表明,当焙烧温度由350 ℃升至650 ℃,Au/TiO2催化剂中Au颗粒平均粒径从2.7 nm增至7.9 nm,晶型保持为锐钛矿型,催化剂比表面积由90 m2/g减至49 m2/g;新鲜和反应后催化剂中的Au均以金属态存在。在愈创木酚加氢脱氧反应中,Au/TiO2催化剂对酚类产物有很高的选择性。随着催化剂焙烧温度增加,其活性逐渐降低,产物中酚类物质的选择性基本不变;当催化剂上Au颗粒平均粒径小于6 nm时,出现了新的反应路径,即愈创木酚上甲氧基中的甲基加氢生成甲烷。不同反应温度与氢气压力的结果表明,Au/TiO2催化剂能够高选择性地断裂1个C-O键,而苯环不会被饱和,酚类产物的分布基本没有变化。催化剂重复使用2次性能稳定。  相似文献   

7.
采用过饱和浸渍法制备4种大孔Mo-Ni-NH3/r-Al2O3催化剂,考察了助溶剂种类和用量对活性金属分散性的影响,利用X射线衍射、透射电镜、N2吸附-脱附、H2-程序升温还原、X射线光电子能谱等表征制备催化剂的结构和物种分布,并通过劣质催化裂化柴油加氢精制评价催化剂的活性。结果表明:采用助溶剂三乙醇胺制备的催化剂A40中活性相分散性最好,预硫化后催化剂表面存在大量高分散的MoS2片层晶格条;A40催化剂具有更低还原温度和更高硫化度,高活性金属物种Mo4+占比高达86.46%,高活性NiMoS物种占比为56.3%;在制备的4种催化剂中,A40催化剂的加氢脱硫、加氢脱氮和芳烃饱和活性均最高,对催化裂化柴油的脱硫率、脱氮率和芳烃饱和率分别为95.99%,97.48%,65.82%,说明A40催化剂是一种性能良好的加氢催化剂。  相似文献   

8.
采用固定床加氢微型反应装置对八乙基镍卟啉(Ni-OEP)和四苯基镍卟啉(Ni-TPP)进行加氢实验,结合Orbitrap质谱获得了其二氢和四氢中间产物的结构信息,从而丰富了对镍卟啉加氢脱金属连续加氢反应历程的认识。基于反应动力学数据,发现Ni-OEP和Ni-TPP的表观与本征加氢反应均遵循拟一级动力学规律,催化剂NiMo/γ-Al2O3相对于NiMo/Zr-SBA-15表现出更高的加氢活性。尽管NiMo/γ-Al2O3催化剂具有较大的平均孔径,但无规则的孔道结构显著降低了镍卟啉的扩散系数,导致扩散对加氢脱镍(HDNi)反应的影响更加显著。因此,针对重油中与Ni-OEP和Ni-TPP结构相近的化合物,需要改善工业NiMo/γ-Al2O3基催化剂的贯穿性或者提高催化剂孔径,通过强化内扩散传质以实现其高效加氢转化。  相似文献   

9.
介绍了负载型5 羟甲基糠醛(HMF)加氢催化剂的制备方法,对所制备的催化剂进行了N2吸附-脱附等温线、透射电镜、氢氧滴定、吡啶红外等表征,并采用高压反应釜装置对其催化加氢性能进行了评价。比较了Ru、Rh、Pd、Pt 4种贵金属,MoO3、WO3、ReO3 3种助剂,SiO2、Al2O3、Y型分子筛、S-1分子筛、MCM-41介孔材料5种载体对HMF加氢反应催化剂性能的影响,结果表明,以SiO2为载体负载Pt及助剂MoO3制得的催化剂性能较好。HMF呋喃环侧链C—C键和C—O键的断裂是引发后续副反应的重要原因,抑制HMF呋喃环侧链C—C键和C—O 键的断裂是提高HMF加氢反应目标产物选择性的关键。  相似文献   

10.
在超细NiO-MoO3/TiO2-SiO2催化剂制备过程中引入模板剂聚氧乙烯十二烷基醚(BRIJ30),采用TG-DTA考察模板剂的脱除,采用N2吸附-脱附、XRD、HRTEM分析考察模板剂对催化剂的物化性质、结构特性的影响。采用微型固定床反应装置,以航空煤油为原料进行加氢脱芳烃反应,考察催化剂的催化活性和稳定性。结果表明,引入模板剂BRIJ-30所制备的NiO-MoO3/TiO2-SiO2催化剂的比表面积明显扩大,孔结构改善,加氢脱芳烃活性提高。  相似文献   

11.
 采用Ni-Mo-W/Al2O3加氢催化剂对棕榈油进行加氢处理,考察了工艺条件对棕榈油加氢所得柴油馏分的选择性以及反应过程的影响规律。结果表明,棕榈油加氢产物主要是 C15~C18饱和脂肪烃,其柴油馏分的收率可达83%以上,柴油馏分的十六烷值高达99以上。矿物柴油中掺入棕榈油加氢得到的柴油馏分可提高柴油的十六烷值,掺入量每增加10%(质量分数),十六烷值提高约4~6个单位。棕榈油加氢处理过程中,提高反应温度和液时空速、降低反应压力和氢/油体积比有利于棕榈油中羧基的脱除,可以降低化学氢耗。  相似文献   

12.
摘要:通过水热法合成了载体MCM-41与Zr-MCM-41,再由不同初始Ni/P摩尔比的Ni(NO3)2·6H2O和(NH4)2HPO4溶液与Zr-MCM-41经过共浸渍、高温焙烧、氢气程序还原和钝化制备了不同Ni/P比的NixP/Zr-MCM-41新型加氢脱氧催化剂,通过XRD、XPS、TEM等方法对催化剂性质进行表征。比较不同Ni/P比的NixP/Zr-MCM-41催化剂性质。结果表明:Ni/P=1/1时,生成Ni2P活性组分,Ni2P在Zr-MCM-41载体表面上分散均匀、晶粒小、晶型好、分散度高,催化剂表面存在部分因钝化而形成的NiO。对Ni/P比为1:1的催化剂进行了催化性能评价,催化剂与麻风树油在高压反应釜中进行加氢脱氧反应,反应温度为350℃,压力为4.0MPa,产物组分分析表明催化剂具有优异的加氢脱氧性能,脱氧率高达93.90%,所得组分中,烷烃含量达89.66%,C15~C20组分占直连烷烃组分61.90%,因此,柴油组分产率较高。  相似文献   

13.
介绍了Ni2P催化剂的结构特征、加氢脱氧(HDO)活性相及生物油中典型的含氧化合物,综述了具有代表性的典型含氧化合物呋喃类、酚类、醚类和酯类在Ni2P催化剂上的加氢脱氧机理方面的最新研究进展。HDO过程中含氧化合物在催化剂作用下发生C-O键断裂,O主要通过加氢-氢解以H2O的形式脱除,其脱氧产物较为复杂。生物油中富含呋喃类和酚类化合物,因需要苛刻的脱氧反应条件,他们的脱氧难度最大。今后,需进一步深入开展HDO理论研究,探究Ni2P催化剂催化活性的调控机制,制备出性能更加优异的HDO催化剂。  相似文献   

14.
采用可再生资源(如植物油、动物油和废弃油脂等)制备生物柴油是有效解决能源供给问题和化石燃料引发的环境问题的有效途径之一。综述了油脂加氢脱氧(HDO)制得的生物柴油具有的优点及涉及的反应,并详细叙述了催化反应机理。重点介绍了贵金属催化剂(如Rh、Pt、Pd和Ru)和过渡金属Mo和Ni催化剂用于油脂HDO的反应机理,阐述了催化剂中金属种类、载体性质和助剂等对油脂催化HDO反应机理的影响,并对其未来的发展进行了展望。通过对催化剂HDO反应机理的深刻理解,以及对活性组分的优化与组合,能有效调控相应催化剂的HDO反应性能,为生物柴油工业化生产奠定了良好的理论基础。  相似文献   

15.
以鳞片石墨为原料,通过Hummer法合成氧化石墨(GO),然后与拟薄水铝石溶液充分混合后还原,得到还原氧化石墨烯 氧化铝复合载体(rGO-Al2O3),再采用浸渍法制备出负载型Ni2P/rGO-Al2O3催化剂。通过扫描电子显微镜、物理吸附仪和X射线衍射仪等手段对催化剂进行了表征。以苯甲醛加氢脱氧(HDO)制甲苯为反应体系,在反应温度300℃、压力2.5 MPa、反应时间4 h条件下,对比了rGO-Al2O3复合载体与单独rGO或Al2O3负载的Ni2P催化剂的加氢脱氧性能。结果表明,rGO-Al2O3具有发达的孔结构和较大的表面积,Ni2P/rGO-Al2O3催化剂展现出良好的催化活性和选择性。  相似文献   

16.
采用浸渍法制备了Mo-Ni/γ-Al2O3催化剂,利用BET、XRD、NH3-TPD等方法对还原态和硫化态Mo-Ni/γ-Al2O3催化剂进行了表征,并以模型化合物乙酸和F-T合成轻质油为原料,研究了还原态和硫化态催化剂的加氢脱氧(HDO)性能。结果表明,还原态催化剂具有较大的比表面积和孔体积,活性组分分散度较高;硫化态催化剂的酸性大于还原态催化剂。还原态催化剂具有比硫化态催化剂更好的HDO催化活性,不论是对模型化合物乙酸还是F-T合成轻质油都能获得更高的转化率;但用模型化合物乙酸的研究结果表明,硫化态催化剂不利于C—C键的断裂。  相似文献   

17.
采用Pt系负载型催化剂,在高压反应釜内进行了生物质快速裂解油(生物油)的低温加氢脱氧研究。考察了催化剂的种类(Pt/C和Pt/γ-Al_2O_3)、反应温度(180~240℃)和反应时间(20~80 min)对生物油加氢脱氧效果及产物收率的影响。实验结果表明,采用Pt/γ-Al_2O_3催化剂,在优化的反应条件(即反应温度220℃、反应时间60 min)下,生物油的脱氧率可达50%以上。产物分析结果表明,由于氧的脱除,提质油热值增加到33.45 MJ/kg,而羧基的转化使其pH提高到3.25;且产物实现了油水分离。该方法的特点是焦炭收率低(低于2%),因此催化剂的寿命长。  相似文献   

18.
应用密度泛函理论计算研究了邻甲酚在催化剂Fe(211)表面上的吸附活化行为和加氢脱氧反应性能。在此基础上,探究了过渡金属Pd掺杂以及表面水对Fe催化剂活性和产物选择性的影响。结果表明,邻甲酚通过苯环与催化剂表面发生吸附相比于通过羟基与表面相互作用更具能量优势,有利于活化苯环及CAr—O键。Fe(211)表面上邻甲酚脱羟基生成甲苯比其脱甲基生成苯酚更具动力学优势。Pd掺杂减弱了邻甲酚的吸附能,但其使邻甲酚CAr—O键断裂再加氢生成甲苯的活化能垒降低。Pd掺杂能够促进H2分子解离,增大表面H*覆盖度,降低关键表面物种的吸附热,最终提高邻甲酚加氢脱氧速率。因此,Pd掺杂Fe催化剂对邻甲酚加氢脱氧生成芳烃表现出较好的活性和选择性。H2O*参与能够进一步降低邻甲酚脱羟基活化能垒,促进产物甲苯的生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号