首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
水力压裂技术是页岩储层开发中的关键技术之一,如何实现储层改造体积的最大化,是制约当前页岩储层高效开发的技术难题。通过开展水力压裂物理模拟实验,直接观察水力压裂裂缝扩展形态,有助于准确认识裂缝扩展机理。通过对762mm×762mm×914mm四川盆地龙马溪组页岩露头和人工样品开展针对性实验研究,分别考察了天然裂缝,泵注参数(排量、黏度)对该龙马溪组页岩水力压裂裂缝形态的影响,同时采用声发射监测技术,对页岩储层声发射事件分布规律进行分析。结果表明,天然裂缝的存在是实现储层复杂裂缝形态的必要条件之一,其分布形态又决定了水力裂缝形态的复杂程度;对水力裂缝形态的评估需要将施工净压力、排量、黏度三者结合考虑,提高施工净压力有利于形成复杂裂缝,随着施工排量或黏度的增长,净压力呈现先增大后减小的规律,即当排量或黏度过高时,裂缝形态又趋于单一化;声发射监测结果能够客观反映裂缝在三维空间内的扩展趋势,声发射率和振幅与泵注压力曲线趋势一致,出现多个峰值,表明页岩水力裂缝扩展具有明显的非连续特征。本工作为页岩压裂机理研究探索了实验方法,为该区块现场体积压裂工艺设计、改造后评估提供实验依据。  相似文献   

2.
页岩气藏在增产改造过程中需要大规模的水力压裂,施工排量的选择对水力压裂效果非常关键。利用真三轴水力压裂实验设备,模拟了压裂过程中不同排量条件下水力裂缝的扩展以及与天然裂缝的沟通情况。通过分析压裂曲线可知:变排量压裂能够提升缝内净压力,诱导水力裂缝转向,开启更多的天然裂缝形成复杂裂缝网络;天然裂缝发育时,排量越大,泵压越大,泵压波动越大,越有利于沟通更多的节理缝。  相似文献   

3.
受储层非均质性、天然裂缝发育和层理等的影响,页岩气水平井压裂时施工压力曲线形态复杂,所蕴含的大量信息难以被充分挖掘。为了准确表征水力压裂裂缝参数进而评价压裂效果,基于页岩气缝网压裂理论,采用套压、泵注排量、支撑剂浓度等实时数据,建立井底净压力折算模型,构建净压力斜率和净压力指数两个关键表征参数,动态划分净压力曲线阶段,用以描述压裂过程中不同裂缝延伸行为所对应的力学条件,识别出缝网延伸、裂缝延伸受阻、裂缝延伸正常、裂缝沿层理延伸、裂缝沿缝高延伸、液体快速滤失等6种裂缝延伸模式,综合形成了页岩气水平井缝网压裂施工压力曲线诊断识别方法。研究结果表明:(1)所形成的方法摒弃了常规储层压裂施工曲线诊断识别方法的不足,提出了缝网复杂指数这一新概念;(2)缝网复杂指数越大,代表缝网延伸和层理延伸的时间越长,储层改造效果越好;(3)以四川盆地东南缘地区页岩气井为研究对象开展应用,单井平均缝网复杂指数为0.3,与该区微地震监测结果吻合度较高,证实所形成的方法具有较高的可靠性。结论认为,该模型方法有助于提升页岩气储层压裂改造潜力和水平,对于完善页岩气储层缝网压裂压后评价技术、指导现场压裂施工实时动态调整具...  相似文献   

4.
泾河油田的大多数储层属于低孔低渗致密储层,压裂水平井是获得产能的主要方法。采用常规单段压裂工艺,产量较低,因此开展了多簇压裂工艺研究。文中对多簇压裂起裂机理分析发现,在诱导应力作用下,破裂压力发生改变。在地层破裂阶段,迅速提高排量,能够实现2簇同时破裂。通过分析多簇压裂影响因素,确定了泾河油田多簇压裂设计参数,包括簇间距、净压力、施工排量等。现场试验表明,泾河油田产量明显提高,多簇压裂增产效果显著。  相似文献   

5.
针对水力压裂及高能气体压裂在储层改造方面所存在的不足,进行了复合压裂增产技术研究,对复合压裂增产机理及其优势进行了分析,探讨了复合压裂裂缝形态及扩展规律。研究表明:复合压裂可以形成多裂缝、较大缝长的裂缝体系,能大幅提高裂缝导流能力,并可有效破除井壁应力集中现象,适用于破裂压力较高的低渗储层改造;射孔方位角度越大,复合压裂裂缝扩展长度越短;注液排量越大,裂缝转向半径越大;水平地应力比值越大,裂缝转向半径越小。  相似文献   

6.
鄂尔多斯盆地长7致密油Ⅱ类储层脆性指数低、水平两向应力差较大、天然裂缝不发育,常规混合水压裂难以形成复杂裂缝,单井产量低,为此研发了应力循环压裂技术。通过物模实验明确了该压裂技术增产机理,完成了工艺优化和工具配套。该工艺采用应力循环压裂工具泵注高砂浓度液体,在环空注入净液体,根据压裂过程中地层响应和压力变化,实时控制井底砂浓度和排量,对储层加载循环应力,使储层受到疲劳破坏,实现缝网压裂。现场试验37口井,平均施工规模与常规混合水压裂相当,施工排量仅为常规混合水压裂的一半即可实现多次缝内升压,较对比井有效改造体积增加44.5%,单井日产油量提高1.6 t。  相似文献   

7.
页岩气储层水力压裂物理模拟试验研究   总被引:4,自引:0,他引:4  
为了给彭水地区页岩气开发提供技术支持,进行了页岩储层水力压裂物理模拟试验研究,建立了一套页岩储层水力压裂大型物理模拟试验方法。利用声发射监测系统实时监测了页岩压裂裂缝的产生与扩展演化过程,观察了水力压裂裂缝形态,并探讨了压裂液黏度、地应力差异系数、压裂液泵注排量等因素对水力裂缝形态及其扩展的影响。试验结果表明,随着压裂液黏度降低、地应力差异系数减小,水力裂缝沿着天然裂缝方向延伸,将原有天然裂缝沟通并形成网络裂缝。根据泵压曲线变化结果,提出在实际压裂施工过程中采用变排量的方式提高压裂改造体积,这可为页岩气压裂优化设计提供依据。   相似文献   

8.
页岩气井压裂过程中,压裂液通过大排量方式注入井筒,井底温度会急剧降低,同时高泵压也增加套管受力,加剧套管失效风险。鉴于此,建立了压裂过程中套管-水泥环-地层组合体瞬态温-压耦合模型,着重分析施工排量、注入温度和施工压力对套管应力的影响。研究结果表明:流变参数会影响对流换热系数,继而影响井底温度的变化,应该选择合理的流变参数,改善压裂液与井筒之间的对流换热;排量增加会迅速降低井底温度,增大套管应力,且原始储层温度越高,温度降低幅度也越大,套管应力增加越多;套管应力随压裂液注入温度降低而增加;合理的施工压力有助于降低套管应力。因此合理的施工泵排量、压裂液注入温度以及施工压力,能有效减小压裂过程中井底温度差,从而改善套管受力,保证压裂过程中套管的安全。  相似文献   

9.
页岩气储层低孔低渗,需用水力压裂等方法进行储层改造方可获得经济产能。储层改造中裂缝的形态和分布对体积改造效果至关重要。为了研究压裂裂缝的模拟方法,系统调研和对比了储层水力压裂模拟常用方法,开展了扩展有限元模拟,研究表明:①水力压裂物理模拟实验能够直观观测裂缝的形态及展布特征,但因试样尺寸等问题难以代表实际储层压裂情形;②常用的数值模拟方法有边界元法、非常规裂缝模型、离散化缝网模型和扩展有限元法等,这些方法各有优缺点,需做有针对性的改进才能更好地模拟真实页岩储层压裂情况;③应用扩展有限元法模拟水力压裂和分段顺序压裂过程中裂缝的延伸情况,得到射孔方向与最大水平主应力之间夹角和诱导应力对压裂裂缝的影响,夹角越大,裂缝偏转角度越小,偏转距离越大,初始破裂压力越高,裂缝稳定延伸的压力也越大,而诱导应力的存在会抑制压裂裂缝的延伸。对实际压裂工程中射孔方向的选择和分段压裂射孔间距的设计具有指导意义。  相似文献   

10.
水力压裂裂缝起裂与拓展轨迹对致密油气储层水力压裂改造效果的影响至关重要。基于胜利油区某区块埋深为3200m的致密砂岩储层岩石试样的单轴压缩物理实验结果,应用数值模拟软件RFPA~(2D),对单轴压缩数值模拟实验中的岩石力学参数进行标定,建立数值模拟模型,研究岩石脆性指数及残余应力水平对水力压裂裂缝拓展轨迹的影响。研究结果表明:岩石脆性指数越大,越有利于水力压裂裂缝的拓展,并且产生的裂缝越宽,起裂压力越小,形成有效复杂裂缝网络的面积越大,水力压裂改造的效果越好;岩石残余应力水平越低,水力压裂产生裂缝的发育程度越高,并且压裂裂缝的宽度越宽,起裂压力越低,水力压裂改造的效果越明显。  相似文献   

11.
煤岩断裂力学性质是煤储层水力压裂改造的重要力学约束,查明煤岩断裂力学性能及其对储层压裂造缝效率的影响机制对于压裂工艺优化、造缝效果改善具有现实意义。以阿拉善二道岭矿区深部(>1 800 m)高阶煤岩为对象,采用压痕法(IM)测试计算了煤岩的维氏硬度(Hν)及断裂韧度(KIC),探讨了在不同压头载荷施加条件下煤岩维氏硬度、断裂韧度值的变化规律,对比分析了低(100 g)、中(500 g)、高(1 000 g)三级压头载荷施压作用下,煤岩的破碎效率及造缝效果,提出高阶脆性煤岩在受压断裂过程中存在阶段式顿挫效应。研究认为:煤储层水力压裂应考虑脆性煤岩辐射裂缝延展效应,采取压裂液逐级变排量注入技术(及时充注新生成的裂缝空间),以维持较高裂缝净压力,产生更大的应力强度因子,提高储层压裂造缝效率,研究结果可为深部高阶煤储层水力压裂改造理论深化与效率提升提供科学参考。  相似文献   

12.
径向井-脉动水力压裂是一种煤层高效增透新方法。利用声发射仪和伺服式脉冲疲劳试验机,开展了煤岩径向井-脉动水力压裂室内实验。基于广义关联积分分形维数计算方法与型煤岩样声发射信号响应特征,分析了压裂过程中微裂缝发育特点和宏观裂缝扩展规律,探究了径向井分支数、长度、脉动频率和振幅等参数对压裂效果的影响规律。实验结果表明,低压脉动压裂阶段声发射信号相对分散,脉动能量促使微裂缝发育;高压脉动压裂阶段声发射信号相对集中,脉冲能量促使主裂缝快速延伸;呈非对称展布的径向井眼数量越多、长度越长,煤岩增透效果越好。实施径向井-脉动水力压裂时应控制初始脉动压力低于煤岩起裂压力,适当延长低压脉动作用时间,使微裂缝在近井地带充分发育,以降低主裂缝延伸压力,形成更大尺度宏观裂缝。  相似文献   

13.
为了给压裂施工提供合理的泵压增量及地层破裂压力参考值,需要预测压裂裂缝的高度.利用声波全波测井获得的地层纵横波时差,结合密度测井和自然伽马测井资料,可以计算地层弹性参数、泥质含量和孔隙度,进而可得到合理的岩石固有抗压强度.通过定量计算岩石的断裂韧度和地层的应力强度因子,便可预测压裂裂缝的延伸高度.设计了相应的实际资料处理计算软件.应用实例表明该方法可以有效预测压裂裂缝延伸高度.  相似文献   

14.
储隔层水平地应力差是水力裂缝高度延伸的主控因素,采用大尺寸全三维水力压裂实验系统模拟储隔层地应力条件,对长庆长6砂岩进行水力压裂裂缝垂向扩展模拟实验,并实现对大尺度岩样内部裂缝扩展的全三维实时声波监测。通过声波监测结果与实际裂缝形态对比,讨论了层间应力差、施工参数(排量、黏度)、施工压力对裂缝垂向延伸的影响。结果表明:缝高受层间应力差控制明显;同时施工参数也会影响裂缝的垂向延伸,高黏流体压裂有利于缝高延伸;对于均质致密砂岩岩样,实时声波监测技术能够对裂缝扩展动态进行有效监测。本研究为缝高延伸机理研究提供了实验手段,也为现场微地震监测提供参考。  相似文献   

15.
重复压裂是三塘湖盆地油藏提高产能和采收率的必备手段。文中通过基于黏聚层单元的有限元数值模拟、室内岩石力学实验、声发射监测和岩石力学屈服破坏准则理论等手段,系统研究了该区块重复压裂改造中的增能力学机理。研究结果表明:增能压裂的核心是提升全局范围内地层孔隙压力,而暂堵转向是局部范围提升已有裂缝内的净压力,二者配合使用,使整体压力和局部净压力提升,在较大范围内激活天然裂缝系统。增能压裂的应力应变曲线特征、声发射特征呈现多次起伏波动和多次破裂特征,破裂压力相对较低。增能压裂裂缝扩展参数与地层孔隙压力提升比例、岩石力学参数及水岩相互作用时间等因素密切相关,其孔隙压力增加存在某一最优化值。  相似文献   

16.
页岩储层水力裂缝网络多因素耦合分析   总被引:1,自引:0,他引:1  
为优化压裂设计、提高页岩储层的改造效果,基于室内真三轴水力压裂模拟实验、现场压裂实践和理论分析的方法,从页岩绪层岩石的脆性指数、水平应力差、天然裂缝的力学特征和发育程度、液体黏度和施工参数等方面分析了页岩储层压裂形成缝网的受控因素。结果表明:页岩储层的水力裂缝网络发育程度受到地质因素和工程因素的双重作用;从储层地质因素上看,岩石的脆性指数越高、天然裂缝越发育、天然缝胶结程度越差,越有利于形成缝网;从压裂作业的因素看,压裂液黏度越低以及压裂规模越大,越有利于形成充分扩展的缝网。在分析单个因素的基础上,建立了多因素耦合的缝网发育指数来表征页岩储层水力裂缝网络发育程度,并用于评价页岩储层压裂后水力裂缝的复杂程度。  相似文献   

17.
针对煤层气钻采过程中普遍存在的储层伤害解除不彻底的问题,提出了有助于解堵和增产的径向井复合脉动水力压裂技术思路:水力喷射多分支径向井,利用高导流径向孔眼进行适度的脉动水力压裂改造,从而在主井筒附近一定区域内最大限度地冲击、破碎煤层,形成高导流通道与裂缝网络相结合的大范围卸压增透区。为了验证其技术原理,设计并开展了径向井复合脉动水力压裂室内实验,采用声发射仪与脉冲伺服疲劳试验机等实验装置,围绕径向水平井复合压裂形成裂缝时的声发射响应特征与煤岩的破裂程度、宏观裂缝形态之间的关系开展了室内研究。结果表明:(1)实验条件下,径向水平井复合脉动水力压裂达到常规压裂峰值压力的1/3~1/4下即可起裂,声发射事件数是常规压裂的1.38~7.07倍;(2)径向水平井复合脉动水力压裂中获得强烈的声发射信号响应,产生宏观破裂的峰值压力较低,相同条件下更易获得较大范围的缝网;(3)径向井分支数、井眼长度、动载频率及振幅等参数是影响径向水平井复合脉动水力压裂效果的重要因素。结论认为,径向水平井复合脉动水力压裂方法提供了一种煤层气解除储层堵塞和高效开发的新思路,可实现煤层气井的有效解堵和增产。  相似文献   

18.
王府断陷深层气藏火山岩储集层具有埋藏深、物性差等特征,传统的开采手段受限,需进行压裂改造才能有效建产。以王府断陷深层气藏火山岩储集层为研究目标,通过岩石力学实验和声发射测试,综合岩石的各向异性、脆性、应力敏感性、天然裂缝密度、声发射活动性等共同评价储集层的可压性和造缝能力。研究表明:王府断陷深层气藏火山岩脆性矿物含量高,抗压强度较大;岩石弹性波速变化范围大,应力敏感性有一定的差异性,天然裂缝各向异性弱;储集层存在一定的流体敏感性,但敏感性强弱程度不一;蒸馏水和质量分数为15%的KCl溶液的造缝能力较强。储集层可压性综合评价对优选压裂层位、压裂液体系和设计压裂改造方案提供理论指导,为王府断陷深层气藏的勘探开发提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号