首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 16 毫秒
1.
通道压裂通过脉冲交替泵入含支撑剂的携砂液和不含支撑剂的中顶液,在人工裂缝中形成非均匀柱状支撑结构的不连续铺置,从而在裂缝中形成流体流动的高速通道。目前对于支撑剂团在地层闭合压力作用下的变形规律尚认识不清,导致对支撑裂缝宽度的变化规律认识不明,从而难以准确计算支撑裂缝导流能力。根据大型可视化平板支撑剂运移铺置实验结果,统计分析支撑剂团铺置形态及尺寸,将支撑剂团分为3类。通过实验模拟支撑剂团柱的压缩变形过程,得到不同闭合压力下支撑剂团柱高度变化规律和支撑剂团杨氏模量。采用光滑粒子法,将支撑剂团柱离散成具有实际质量与体积的颗粒;采用有限元法将地层进行离散;通过两者耦合接触算法,对支撑剂团柱与地层的接触进行耦合计算;根据平板实验抽提的支撑剂团柱尺寸,建立3种类型的支撑剂团柱与地层接触模型;继而获取不同地层闭合压力与岩石杨氏模量下的支撑剂团柱压后形态、法向应力以及支撑剂团柱高度等参数,研究支撑剂团柱变形规律。采用计算流体动力学方法,建立支撑剂团柱-裂缝的缝内流动模型,计算得到不同施工参数下的压力场和速度场。  相似文献   

2.
通道压裂是低渗透致密油气藏高效、低成本开发的关键技术,其关键是在水力裂缝中形成供油气流动的畅通通道网络,但目前针对通道压裂支撑剂铺置形态、流动通道特征研究尚处于起步阶段。通过大型平板裂缝可视装置,开展通道压裂支撑剂动态输送实验研究,分析纤维、压裂液、支撑剂、泵注排量和脉冲时间对支撑剂输送和流动通道形态的影响。实验结果表明:纤维和压裂液决定能否在支撑裂缝中获得流动通道,而泵注排量和脉冲时间对流动通道形态有较大影响,而支撑剂密度和粒径对流动通道形态几乎无影响;胍胶分子链缠绕在纤维表面,使得纤维网状结构范围增大、强度增强,两者共同提高了携砂液脉冲段在输送过程中的稳定性;流动通道类型可以分为3类,且流动通道形态受到泵注排量和脉冲时间乘积的控制。当脉冲单元注入参数为2.5~5.0 L时,形成的高速通道形态最优,支撑裂缝导流能力最大。  相似文献   

3.
页岩储层支撑裂缝导流能力实验研究   总被引:2,自引:0,他引:2  
为深入了解页岩储层支撑裂缝导流能力的大小及裂缝有效性,开展了支撑剂粒径、类型、铺置方式对导流能力影响的实验研究,并进行了循环应力加载模拟开、关井过程引起的地层应力波动对页岩储层导流能力影响的实验研究。结果表明:低闭合压力下,粒径越大,导流能力越高,随着闭合压力的增大,大粒径支撑剂导流能力下降迅速;支撑剂均匀铺置与完全混合铺置相比,前者导流能力较好;开、关井过程引起的地层应力波动对页岩导流能力的影响较大。以上因素的研究对压裂方案设计优化和现场施工具有一定的理论指导意义。  相似文献   

4.
为了指导延长气藏的压裂改造开发,对延长气藏压裂改造中常用的支撑剂进行了支撑裂缝导流能力测试并确定测试介质和压裂液破胶的影响。采用灰色关联分析,确定不同支撑剂铺置方式中影响因素的敏感程度。研究表明:铺砂量一定,支撑剂导流能力随闭合压力增加而降低;闭合压力一定,支撑裂缝导流能力随铺砂量增加而增加;支撑剂组合的导流能力随低目数支撑剂占比增加而逐渐增大。裂缝前端铺置小粒径支撑剂,可以防砂和支撑微裂缝,裂缝中部铺置中等粒径起主要的支撑作用,大粒径的则处于缝口位置支撑缝口。受滑脱效应影响,采用气体测量得到支撑裂缝导流能力相比液体测量更高;支撑裂缝导流能力与压裂液破胶程度呈反相关关系;单一类型支撑剂,铺砂量影响最大,其次为气体流量和支撑剂等效目数、闭合压力;2种类型支撑剂组合,气体流量的影响最大,其次为支撑剂等效目数、闭合压力;3种类型支撑剂组合,支撑剂等效目数影响最大,其次为气体流量、闭合压力。  相似文献   

5.
采用可视化平行板裂缝物理模拟实验装置,开展了不同粒径支撑剂在不同黏度压裂液、变排量下的动态携砂实验,模拟现场施工排量下支撑剂铺置的规律与支撑剖面。利用API裂缝导流设备和岩心驱替装置,开展主裂缝和微裂缝支撑导流能力实验。研究表明,非剪切裂缝渗流能力在一定闭合压力下几乎全部散失,分支缝和远端微裂缝少量的支撑,会获得一定的渗流能力。滑溜水依靠其黏度基本不具备携砂能力,使用滑溜水进行体积压裂,更多依赖水动力携砂,而依靠黏度携砂更有利于将支撑剂输送到裂缝远端。在进行体积压裂时,段塞打磨建立好裂缝通道后,先期泵注一定量相对大粒径支撑剂,实现近井裂缝下部高导流支撑;然后泵注小粒径支撑剂,同时也可适当提高携砂液黏度,实现分支缝和裂缝远端支撑;最后高砂比尾追相对大粒径支撑剂,实现近井裂缝高导流支撑,从而保障和实现体积压裂裂缝的理想支撑,从根本上提高体积压裂效率与效果。  相似文献   

6.
进行水力压裂的目的就是将支撑剂铺置于已产生的裂缝中,支撑剂在裂缝内的分布规律决定了压裂后填砂裂缝的导流能力和增产效果。为了研究湍流对支撑剂铺置的影响,利用大型可视化裂缝模拟装置进行了支撑剂铺置模拟实验,同时运用Fluent模拟软件中的欧拉两相流模型对支撑剂的铺置进行数值模拟研究。实验结果表明,随着压裂施工排量的增大,裂缝入口处形成的湍流强度越强,致使靠近裂缝入口处铺置的支撑剂越来越少,直至无支撑剂铺置,大大降低了裂缝的导流能力。其研究结果可为水力压裂施工中设计合理的施工排量提供帮助。  相似文献   

7.
页岩气水平井长缝网络压裂支撑剂铺置浓度低,嵌入伤害大,导流特性与常规油气藏不同,与北美页岩气水平井中短缝压裂也有明显差异。为评价不同类型支撑剂在低铺砂浓度下的导流特性,采集龙马溪组地层页岩露头制作试验岩样,使用 FCES-100 裂缝导流仪对陶粒、石英砂、覆膜砂3种类型支撑剂在不同粒径、不同铺砂浓度和不同闭合压力条件下的导流特性进行了评价。结果表明:支撑剂类型、闭合压力和铺砂浓度对页岩支撑裂缝的导流能力影响较大;中高闭合压力和低铺砂浓度条件下,覆膜砂的导流能力最大,陶粒次之,石英砂最小。评价结果可为页岩气ESRV(effective stimulation reservoir volume)网络压裂裂缝导流能力的优化、支撑剂的优选和压裂设计提供依据。   相似文献   

8.
裂缝有效导流能力是评价压裂施工效果的主要参数,也是影响压裂增产效果的最重要因素之一。设计了多尺度裂缝导流能力实验方法,采用单一粒径和组合粒径的铺置方式,研究了闭合压力、粒径组合方式、铺砂浓度及应力循化加载条等因素对多尺度主裂缝及分支缝内支撑剂的导流能力变化的影响。实验研究结果表明:随着闭合压力增加,大粒径支撑剂与小粒径支撑剂的导流能力差距逐渐变小,主裂缝及分支缝内支撑剂导流能力逐渐降低,而且这种降低趋势存在明显的转折点。组合粒径铺置条件下,主裂缝及分支缝内支撑剂组合均存在最优的组合方式。主裂缝及分支缝内支撑剂铺置砂浓度越高,导流能力也越高;随着闭合压力增大,高浓度铺砂与低浓度铺砂条件下的导流能力差距逐渐变小。应力加载破坏对支撑剂导流能力的影响是不可逆的。现场应用表明,在满足压裂工艺要求前提下,通过支撑剂组合方式及加砂方式的合理优化,可有效提高裂缝导流能力及压后产量。研究结果为体积压裂方案优化及现场施工提供基础数据依据。   相似文献   

9.
通道压裂铺砂形态是显示通道压裂效果的重要指标。文中采用可视化变角度缝网支撑剂铺置装置,研究了通道压裂裂缝铺砂形态影响因素,分析了压裂液黏度、支撑剂质量浓度、纤维质量浓度、排量、射孔数、脉冲时间对铺砂通道率的影响,并采用混合水平正交试验及拟水平法研究了各因素对通道率的影响程度。结果表明:支撑剂质量浓度越低,脉冲时间越短,纤维质量浓度越大,则通道率越高;注入排量过高或过低均对支撑剂铺置形态不利,最优排量为4 m3/min;分簇射孔的通道率要明显大于连续射孔;较大的压裂液黏度能获得更大的通道率。通过混合水平正交试验,得出各因素的影响程度大小顺序依次为:支撑剂质量浓度、脉冲时间、纤维质量浓度、布孔方式、排量、压裂液黏度。  相似文献   

10.
支撑裂缝的导流能力是评价页岩储层水力压裂施工效果的一项重要参数,其大小受到多种因素影响。文中开展了支撑剂类型、颗粒大小、铺砂浓度等对支撑裂缝导流能力影响的室内实验研究。结果表明:陶粒的导流能力明显高于石英砂和覆膜砂,在低闭合压力条件下,20~40目陶粒的导流能力最大,在高闭合压力条件下,组合支撑剂的导流能力明显高于单一支撑剂;铺砂浓度越大,裂缝导流能力越大;循环应力加载模式下,裂缝导流能力比稳载时下降了31.7%,经过滑溜水和胍胶压裂返排液污染后,裂缝导流能力分别下降了33.9%和76.5%。研究成果指导了X-4井的现场压裂施工,该井措施后产气量较高且稳定生产,压裂增产效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号