首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
针对液动射流冲击器中压盖与射流元件之间出现的密封及缸体活塞卡死问题,设计了新型碟簧元件顶紧及密封机构,对该密封机构进行了理论计算、强度校核和性能测试试验。试验得出了该结构射流冲击器的最大冲击功、冲击频率和冲击末速度,得到了冲击器性能参数与操作参数之间的关系曲线。试验结果表明:该机构可以解决液动射流冲击器内部零部件因预紧力不足导致的密封失效和因预紧力过大导致缸体变形、活塞运动受阻或卡死的问题;冲击器的性能参数得到了优化,可以根据现场所需的冲击功和冲击频率,对冲击器的流量等操作参数进行调节,以满足不同地层岩性的钻井需求。  相似文献   

2.
液动射流冲击器顶紧及密封机构设计与试验   总被引:1,自引:0,他引:1  
针对以往液动射流冲击器中元件压盖与射流元件之间出现的密封失效、缸体变形及活塞运动受阻等问题,设计了新型碟簧元件顶紧及密封机构。对该密封机构进行了理论计算、强度校核和性能测试试验,得出了该结构射流冲击器的最大冲击功、冲击频率和冲击末速度以及冲击器性能参数与操作参数之间的关系曲线。试验结果表明,该液动射流冲击器工作正常,稳定性良好,在不同排量下具有稳定的冲击功、冲击末速度和冲击频率。现场应用中,可以通过调节冲击器的行程参数和操作参数获得最佳的冲击功和冲击频率,以满足地层岩性的钻井需求。  相似文献   

3.
传统的射流式液动冲击器活塞缸体大多采用单、双道侧壁密封方式,易出现活塞缸体局部变形、密封失效和钻具刺漏等问题。鉴于此,应用有限元分析模块SolidWorks Simulation对活塞缸体受力情况进行静力学模拟分析。分析结果表明,活塞缸体局部发生了径向变形,且其上端的轴向和径向变形十分明显。因此,在结构上对活塞缸体侧壁密封方式进行优化设计,即采用新型侧壁密封方式代替传统的单、双道密封圈侧壁密封方式。经有限元分析验证,优化设计后的结构可抑制活塞缸体的径向变形,从而防止侧壁密封失效现象。在相同的试验情况下,改进后的射流式液动冲击器比传统的射流冲击器机械钻速提高约52%,单只钻头进尺提高72%,纯钻时间延长14%,钻头磨损较小。因此优化设计后的液动锤工作寿命更长,工作更稳定,钻井效率更高。  相似文献   

4.
液动射流式冲击器的研究现状与发展方向   总被引:3,自引:2,他引:1  
冲击器作为旋冲钻井工艺技术实施的核心部件,其性能直接关系到旋冲钻井的效果。介绍了液动射流式冲击器的结构、原理和优点,并对冲击器的计算机仿真技术、结构优化及加工现状、性能测试现状进行了评价分析,指出液动射流式冲击器今后将朝着长寿命、大冲击功以及系列化、集成化方向发展。通过对冲击器的持续研究和改进,旋冲钻井工艺技术必将广泛应用于石油钻井行业。  相似文献   

5.
现有液动射流冲击器在高温高压固相钻探时存在射流元件易损坏、缸体密封结构失效及元件压盖结构易松动等问题。为此,首先对该液动射流冲击器射流元件和砧子结构进行改进,增设了导向块及滑轮,并对导向块进行了弧面设计,以减小冲锤往复运动摩擦阻力;同时对缸体结构进行优化,对缸体材料进行优选,对运动副金属进行密封设计,并对元件压盖进行机构优化。现场应用结果表明:改进后的液动射流冲击器可与PDC钻头相配合,与常规钻井相比,其提速达到42. 9%;在进尺基本相同的情况下,纯钻时间缩短14 h。研究结果可为油气田深部坚硬地层提供一种钻井提速新方法。  相似文献   

6.
液动冲击钻井技术是解决硬地层钻速慢难题的有效方法之一。着重对液动冲击器的类型、工作原理、发展现状及优缺点进行综述,并对其在油气钻井行业的发展方向进行探讨。分析结果表明:正作用式液动冲击器的尺寸小,主要应用于浅地层,技术成熟,在地质矿探工程中应用广泛;双作用式和射流式液动冲击器的尺寸较大,适用于深井,该技术处于试验阶段,未大规模推广应用;反作用式和射吸式液动冲击器在早期有研究,后期研究较少。在油气钻井行业中,液动冲击器发展方向是输出功率高、关键部件制造要求高、对复杂井下条件的柔性适应性要求高,双作用式和射流式液动冲击器在油气钻井行业中具有较好的发展前景。  相似文献   

7.
钻井用液动冲击器的参数测试系统   总被引:4,自引:0,他引:4  
钻井用液动冲击器主要由接头,外缸,射流元件,缸体,活塞,冲锤,外筒,砧子等组成,根据其结构特点设计了一套参数测试系统。通过室内测试得到了准确的冲击器测试参数。对调节冲击器的性能及结构改造设计起到了至关重要的作用。文章简要介绍了钻井用液动冲击器的基本结构及工作原理,着重介绍了冲击器测试部分的软硬件结构组成及功能特点。  相似文献   

8.
液动冲击钻井技术发展与应用现状   总被引:5,自引:0,他引:5  
冲击钻井比传统钻井或者金刚石钻井的机械钻速高,特别是在硬质地层能大幅提高机械钻速。在介绍冲击钻井技术特点的基础上,分析了国内外冲击钻井技术的研究进展和应用情况,对国产液动射流式冲击器、射吸式冲击器和阀式冲击器的结构特点和性能参数进行了对比分析。指出阀式液动冲击器在井下的工作寿命和稳定性有待提高,射流式冲击器的工作压降有待降低。最后提出冲击器的2个研制方向:一是高频率、小单次冲击功;二是低频率、大单次冲击功。  相似文献   

9.
新型液动射流冲击器实验   总被引:4,自引:0,他引:4  
针对天然气深井、超深井钻井中难度大,时效低,钻头寿命短等问题,提出在深井、超深井钻井中采用新型液动冲击回转钻井技术。新型液动射流冲击器包括肺形阀式射流冲击器、盖板流阀式射流冲击器、连体阀式射流冲击器、麻雀型阀式射流冲击器,其工作原理与传统射流冲击器类似。实验包括凹劈、凸劈、尖劈、平劈实验。实验结果表明:通过改变劈形,增加阀等措施,除麻雀型阀式射流冲击器外,均可实现正常冲击。但连体式射流冲击器中的阀及尖劈极易损坏。为了实现深井钻井,建议采用加大喷嘴过流断面面积、改变劈形等措施来解决新型液动阀式射流冲击器易损坏的问题。  相似文献   

10.
液动冲击器工作动力学模拟研究   总被引:1,自引:0,他引:1  
液动冲击器工作性能是影响冲击旋转钻井技术现场应用效果的主要因素之一。为充分发挥冲击旋转钻井技术的应用效果,在考虑射流元件工作特性的基础上,运用流体力学理论建立了液动冲击器工作动力学模型,并编制了计算液动冲击器性能参数的模拟程序,通过模拟计算程序得到了在不同液动冲击器结构参数和钻井水力参数下液动冲击器基本参数的变化规律。该动力学模型不仅可用于改进液动冲击器的设计,而且可用于优选液动冲击器的性能参数和冲击钻井钻具组合设计。该研究成果在四川川东地区龙会4井和天东90井得到了应用,对现场施工设计起到了较好的指导作用。  相似文献   

11.
空气锤在油气田研磨性地层提速和高陡地层防斜应用中逐步成熟,但还存在出液地层钻井作业受井底压力的影响而出现输出功率低甚至不工作,以及停止循环时地层液体倒灌气缸而污染空气锤的问题。为此,研制出了同时适应于气体(干气)和雾化泡沫(湿气)钻井介质、具备防止井下流体倒灌的新型泡沫锤。该泡沫锤与空气锤相比,优化了气室结构以保证气体和雾化泡沫钻井介质的输出功率;新增的防倒灌装置在接单根时,依靠泡沫锤阀体与液体当量密度差推动阀体向上运行,可封闭地层流体进入泡沫锤的通道。在松辽盆地徐深气田外围的肇深17井下白垩统泉头组、登娄库组开展了现场试验,泡沫锤在气体介质条件下相比常规钻井机械钻速提高6.5倍,相比气体牙轮钻井提高1倍;在泡沫介质条件下相比常规钻井机械钻速提高2倍且钻进过程未发生井底流体倒灌现象。试验结果表明,所研制的泡沫锤在气体介质条件下相比空气锤输出功率未降低且具备了适应雾化泡沫钻井介质和防井下流体倒灌的能力。  相似文献   

12.
当蒸汽或可凝气体与过冷的冷凝水或冷凝液接触并冷凝时,冷凝水或冷凝液的体积仅为相同质量原蒸汽或可凝气体体积的几百分之一甚至千分之一以下,导致原气相区域变为低压区域。由于压差作用,周边的冷凝水或冷凝液将以极高的速度冲向该区域,产生瞬时压力很大的冲击,并沿管道内存有冷凝水的部位向外传播,引起水锤(水击)发生。水锤会严重影响工业生产,极易导致安全事故发生,必须引起高度重视。结合几个具体实例说明了水锤事故的危害,分析了水锤事故发生的原因并提出了改正措施。对于蒸汽和冷凝水系统,水锤产生的压力和破坏程度是管内蒸汽压力、冷凝水过冷度、形成的汽泡尺寸、汽泡内不凝气体含量的函数。一般而言,产生的压力和破坏程度随前3项的增大而增大,随后一项的增大而降低;不应将蒸汽送至含过冷冷凝水的管线中;在发生水锤事故时应首先关闭蒸汽进料阀,再打开冷凝水放凝阀。对于可凝气体和冷凝液系统,在设计或操作时应避免可凝气体快速冷凝而引起的水锤事故,特别是对塔压热旁路控制方案,应做到冷凝液和热旁路气体分别进回流罐液相和气相部分,两者互不混合。  相似文献   

13.
陈林 《石油学报》2017,38(7):813-820
针对气井关井瞬间产生的水击现象,由于井筒多相流和高压、高温以及天然气的强可压缩性特征,用于水力学的常规水击压力模型难以适用。基于水力学水击理论,分析气井水击机理,根据质量守恒定律和牛顿第二定律,建立由运动方程和连续性方程组成的描述气井多相流水击压力的数学模型;根据该方程属于拟线性双曲偏微分方程的特点,结合气井压力测试和应用需要,建立了两类边界条件:一类适用于通过井底压力计算井口及沿井深的水击压力,另一类适用于通过井口压力计算井底及沿井深的水击压力;通过特征线法对水击压力数学模型有限差分离散求解。计算结果与实测压力对比结果表明,水击压力模型能够精确地反映水击压力的大小、水击周期和水击衰减规律,从而提高压力恢复试井早期段数据质量,改善试井曲线拟合效果,提高试井解释准确度。  相似文献   

14.
体积压裂过程中井屏障完整性失效问题突出。基于页岩气井体积压裂技术特点和MIT24臂井径测井数据,分析了页岩气井压裂过程井屏障系统及其失效模式。根据水力学原理,体积压裂砂堵、停泵瞬间过程井筒内流体流速突变产生水锤效应,水锤压力在井筒内以斯通利波形式沿固?液界面传播。综合考虑水锤压力及流体压缩力因素影响,建立了水锤效应发生过程井筒流体最大波动压力计算模型;分析了压裂砂堵停泵瞬间水锤效应引起的井筒流体压力变化特征及其对套管安全强度系数的影响。研究表明:体积压裂砂堵停泵过程最大水锤压力达31.88 MPa;考虑水锤效应影响,套管的抗挤强度系数降低至0.95。综合考虑页岩气地层滑移错动、套管低温收缩导致抗挤能力降低等情况,体积压裂过程在不均匀外挤载荷影响下足以导致套管发生局部损坏。基于以上研究结果,提出井筒流体压力波动的施工对策,对基于体积压裂完井方式的页岩气井屏障完整性管理具有指导意义。  相似文献   

15.
高含硫地质环境下钻井溢流发生时,及时关井非常重要,但关井产生的水击压力,可能使防喷器超压,而且易在井内最薄弱的环节发生压漏地层事故。通过对ADINA有限元软件的分析模拟计算,提出钻井溢流发生时关井的水击压力可用ADINA有限元软件来进行计算,模拟计算结果表明:“软关井”时水击压力波动较大,井口接近完全关闭时,水击压力突然增大;水击压力由井口到井底逐渐减小,井越深,井底作用的水击压力就越小。“软关井”水击压力的ADINA模型为关井水击压力的计算提供了新方法。  相似文献   

16.
空气冲旋钻井破岩试验台架研制初探   总被引:3,自引:3,他引:0  
分析了空气钻井冲旋破岩的井底压力和温度、钻压、转速、空气排量、空气锤、射流作用等影响因素。由于台架和真实钻井的差异,忽略了井底压力和温度,不做模拟井壁,岩屑可以充分排出。在此基础上,提出了台架机械系统的3种实现方案:方案一借鉴了钻机钻井的实现方法;方案二使用了旋转岩样的方案,不再需要水龙头,钻压施加方便,且节省了一个液压缸;方案三使用液压缸模拟冲击。  相似文献   

17.
硬关井水击问题及减小水击措施的探讨   总被引:2,自引:0,他引:2  
通过对各种关井方式优、缺点的比较,指出了解决硬关井时水击问题的工程意义。对于硬关井来说,水击造成的危害是不容忽视的,必须采取有效措施,从分析井内气、液、固三相流中水击波速入手,推导了水击压力波的传播速度计算公式,结合相应的控制方程对其进行了简要的分析以及实例计算。最后,在分析了各种减小水击压力的方法后,提出在井口加装储能式空气罐控制水击压力的尝试,而且对设有空气罐和未设空气罐的不同井口装置进行了水击压力的理论研究,计算表明,井口安装有空气罐时能够有效地控制水击,这一认识对现场钻井生产具有一定的指导意义。  相似文献   

18.
在活塞杆外径尺寸和缸体内径尺寸确定的情况下,通过更换不同尺寸的缸盖和活塞,观测了射流式液动锤运动副配合间隙变化对其性能影响的规律。观测研究结果表明:(1)当活塞与内缸配合间隙为常规设计值时,随着活塞杆与缸盖配合间隙的加大,在一定范围内冲击频率降低较平缓,超过一定范围后冲击频率随配合间隙的加大而迅速降低;(2)当活塞杆与缸盖配合间隙为常规设计值时,随着活塞与内缸配合间隙的加大,冲击频率几乎成线性迅速降低;(3)输入流量的增加不能改变配合间隙对冲击频率影响的趋势;(4)在数值相同的情况下,活塞与内缸配合间隙对冲击频率的影响比活塞杆与缸盖配合间隙的影响更为显著。  相似文献   

19.
钻井过程中,发生了溢流或井喷,应立即关井。关井过程中,防喷器需经受关井产生的水击压力作用。该文对井喷喷流为天然气、钻井液和气液两相混合物三种情况下的关井水击压力进行分析计算,并以此进行了关井可靠性分析。分析认为,仅在井喷喷流为钻井液且喷流速度较大时,关井方式应选择“软关井”,以降低关井水击压力,其他情况应选择“硬关井”,以减少地层流体侵入。  相似文献   

20.
煤层气低成本钻井技术   总被引:5,自引:2,他引:3  
分析了我国煤层气勘探开发现状,基于煤层气生产特征分析了煤层气开发向产业化、商业化发展降低钻井成本的主要技术方法。根据潜孔锤钻井原理和特点,详细分析了钻压、转速、注气压力、注气量等实钻参数合理的确定方法,综合阐述了这些参数与提高钻井速度之间的变量关系,以及其中影响钻井速度、钻井周期的关键因素,介绍了潜孔锤在煤层气钻井使用中的效果及优点。实践证明,潜孔锤钻井技术是当前降低煤层气开发钻井成本的关键技术之一。还提出了国内轻型钻机现有装备技术条件下潜孔锤钻井的实施方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号